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Abstract The generation of elevated concentrations of sulfide in sediment pore waters that are toxic to
rooted macrophytes is problematic in both marine and freshwaters. In marine waters, biogeochemical
conditions that lead to toxic levels of sulfide generally relate to factors that affect oxygen dynamics or the
sediment iron concentration. In freshwaters, increases in surface water sulfate have been implicated in
decline of Zizania palustris (wild rice), which is important in wetlands across the Great Lakes region of North
America. We developed a structural equation (SE) model to elucidate key variables that govern the evolution
of sulfide in pore waters in shallow aquatic habitats that are potentially capable of supporting wild rice.
The conceptual basis for the model is the hypothesis that dissimilatory sulfate reduction is limited by the
availability of both sulfate and total organic carbon (TOC) in the sediment. The conceptual model also
assumes that pore water sulfide concentrations are constrained by the availability of pore water iron and that
sediment iron supports the supply of dissolved iron to the pore water. A key result from the SE model is
that variations in three external variables (sulfate, sediment TOC, and sediment iron) contribute nearly equally
to the observed variations in pore water sulfide. As a result, management efforts to mitigate against the
toxic effects of pore water sulfide on macrophytes such as wild rice should approach defining a protective
sulfate threshold as an exercise tailored to the geochemistry of each site that quantitatively considers the
effects of ambient concentrations of sediment Fe and TOC.

Plain Language Summary Aquatic plants, such as wild rice, white rice, and waterlilies that have
roots in the saturated soils of wetlands are vulnerable to the buildup of toxic levels of hydrogen sulfide
(also called sulfide). Anaerobic bacteria in the soil make the sulfide from sulfate that penetrates the soil from
the overlying water. When sulfate in the waterbody is low, sulfide in the soil is low. But when sulfate is high,
sulfide has been hard to predict—sometimes low, sometimes high. The analysis of hundreds of wetland
samples finds that sulfide can be predicted if two variables in addition to sulfate are considered: organic
carbon in the soil, which is the food for the bacteria, and iron in the soil, which removes sulfide from solution. A
model of the chemical reactions finds that the three variables, sulfate, organic carbon, and iron, are equally
important in determining sulfide. The sensitivity of individual waterbodies to sulfate pollution effects on wild rice
toxicity can thus be predicted from the analysis of the carbon and iron concentrations in the soil of a wetland.

1. Introduction

The evolution of sulfide concentrations in sediment pore waters can be toxic to rooted macrophytes in both
marine and freshwater environments. Pore water sulfide is the product of anaerobic microbial respiration of
sulfate in sediments. Despite the much different sulfate concentrations between the two environments
—sulfate concentrations are generally orders of magnitude higher in marine systems than most continental
waters—the biogeochemical principles governing the reduction of sulfate to sulfide are the same, and there
should be recognition of the commonality of sulfide toxicity concerns and biogeochemical relationships.
Here we describe a model of the roles of sulfate, sediment total organic carbon (TOC), and sediment iron
(Fe) in determining potentially phytotoxic concentrations of sulfide in relatively sulfate-poor waters.
Essentially the same question, the potential toxicity of sulfide to coastal seagrasses as a function of sulfate,
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TOC, and Fe has been pursued since at least 2000 (e.g., Eldridge & Morse, 2000). The biggest difference in the
approaches between the two environments is that the primary option to reduce sulfide toxicity in freshwater
systems has been to control sulfate, whereas other controlling variables (e.g., TOC or water clarity) are not
only more practical for control in coastal systems but are more likely to have been altered by human activity.

For example, sulfide has been implicated as the causative agent in a global decline of coastal seagrasses. In
this case, the perturbations to sulfur cycling that lead to increased sulfide toxicity relate to anthropogenic
activities that reduce light availability. Seagrasses are dependent on high light levels to produce sufficient
oxygen to detoxify pore water sulfide and so are particularly vulnerable to any actions that reduce light
availability, such as eutrophication or dredging (Orth et al., 2006). In addition, other factors that enhance pore
water sulfide concentrations have been implicated in the decline of seagrasses, such as increased tempera-
ture (Koch & Erskine, 2001), increased sediment organic matter (Govers et al., 2014), iron-poor sediments
(Marba et al., 2008), and low water column oxygen (Borum et al., 2005).

Similar concerns about sulfide toxicity extend to freshwater systems (Lamers et al., 2013). For example, based
on laboratory experiments demonstrating that Cladium is less tolerant of sulfide than Typha, sulfate enrich-
ment has been implicated in the expansion of Typha domingensis (cattail) into areas once dominated by
Cladium jamaicense (sawgrass) in the Florida Everglades (Li et al., 2009). One plant species of particular con-
cern with respect to sulfide toxicity is Zizania palustris (wild rice), which is important in wetland environments
across the Great Lakes region of North America, where it can occur in dense monocultures. This importance
includes both its role as a food resource for waterfowl and humans and its economic significance to those
who harvest and market it. Wild rice is also a very important cultural resource to many Minnesotans, including
indigenous peoples such as the Ojibwe peoples who consider wild rice as sacred (Vennum, 1988).

Wild rice is an annual grass that grows best at water depths of 0.3 to 1.0 m in lakes, rivers, and wetlands with
soft organic sediment, although it can be found rooting in a wide variety of sediment types, ranging from
muck to sand (Aiken et al., 1988). Wild rice seeds are dropped into the water in the fall, lie in the sediment
throughout the winter, and germinate in spring. Its occurrence and distribution are influenced by a variety
of physical, hydrologic, and biogeochemical factors (Myrbo, Swain, Engstrom, et al.,, 2017). For example, the
rate of seed germination declines greatly if the seeds dry; as a result, wild rice is usually found in permanent
waterbodies. Reduced light availability, from turbidity or water color, limits the ability of wild rice to maintain
a population in a waterbody (Myrbo, Swain, Engstrom, et al., 2017), because seedlings need photosynthesis to
augment the seed’s energy reserves in order to successfully reach the water surface (Aiken, 1986).

Sulfate has long been implicated as a variable that influences the occurrence and distribution of wild rice in
Minnesota. The first such implication was by Moyle (1944) who, in an analysis of spatial variations in water
chemistry in Minnesota surface waters, observed “No large stands of rice occur in waters having a SO4
content greater than 10 ppm, and rice generally is absent from water with more than 50 ppm.” This
cognition that wild rice occurrence was associated with waters containing lower levels of sulfate, coupled
with the importance of wild rice in Minnesota, led to the adoption of a sulfate standard to protect wild rice
of 10 mg/L in 1973 by the state of Minnesota. However, the role of sulfate in limiting wild rice habitat has long
been confusing, given that wild rice has been observed to grow well in elevated sulfate waters overlying silica
sand substrate and in commercial paddies with sulfate concentrations of 170 mg/L (Aiken et al., 1988).

More recently, a series of studies commissioned by the Minnesota Pollution Control Agency (MPCA) indicate
that sulfide in sediment pore water is a causative agent for adverse effects to wild rice and that any effect of
sulfate is rather more likely indirect through any controls it exerts on the development of sulfide concentra-
tions in pore waters. These studies include a field survey comprising one or more sampling trips to 93 lakes,
32 stream sites, and 7 wild rice paddies, (Myrbo, Swain, Engstrom, et al., 2017), 10 day hydroponic experi-
ments, and multiyear mesocosm studies (Myrbo, Swain, Johnson, et al., 2017; Pastor et al., 2017).

The goal of the MPCA-sponsored research is to determine if it is appropriate to regulate sulfate in order to
protect wild rice from sulfide toxicity. The relationship between surface water sulfate and pore water sulfide
concentrations, however, is complex, and a standard that seeks to mitigate against the occurrence of sulfide
concentrations harmful to the occurrence of wild rice by limiting sulfate concentrations should consider
these complexities. These complexities are illustrated by considering the effects of both substrate limitation
and geochemical thermodynamics. More specifically, sulfate reduction to sulfide is a microbially mediated
process that involves sulfate-reducing bacteria using sulfate as a terminal electron acceptor to metabolize
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organic matter in the absence of oxygen. Thus, the availability of both sulfate (Capone & Kiene, 1988; Cook
et al,, 1986; Perry et al., 1986; Sinke et al., 1992; Myrbo, Swain, Johnson, et al., 2017) and of organic carbon
(Al-Raei et al., 2009; Glombitza et al., 2013) can limit sulfate reduction. Conditions favorable to sulfate reduc-
tion also can result in iron reduction from insoluble Fe(lll) to soluble Fe(ll). Fe(ll) in turn can react with sulfide
to form insoluble FeS and other iron-sulfide minerals (Hansel et al., 2015; Hines & Jones, 1985; van Cappellen
& Wang, 1996).

Any model that relates surface water sulfate to pore water sulfide concentrations thus has to consider issues
related to model specification—that is, whether the model includes the appropriate variables and whether
the intervariable relationships posed in the model are truly representative of the underlying processes and
satisfy the inherent assumptions of the model framework. Model specification errors thus can lead to erro-
neous coefficient estimates for a governing variable, including errors in both magnitude and direction.
Statistical models that might be developed for the sulfate-sulfide problem also have to accommodate inter-
variable relationships that include both indirect (mediated) and nonrecursive (i.e., feedback) relationships.
Traditional multivariate regression models only control for direct or apparent direct (net) effects and thus
are ill suited for quantifying relationships that are either mediated or nonrecursive. As a result, similar to
model estimation problems imposed by specificity errors, the misapplication of multivariate regression mod-
els can lead to misleading parameter coefficient estimates and a failure to properly quantify the components
contributing to the total effect of a variable such as sulfate on a response variable such as sulfide, particularly
if the model includes mediating variables (Grace et al., 2009; Pollman, 2014).

One approach that allows for and more properly accounts for the effects of mediating variables is structural
equation modeling (SEM). Based on the hypothesized relationships that constitute the model, SEM seeks to
reproduce the covariance structure of the observed data (Ullman, 2007). SEM can include models comprising
measured or observed variables only (path analysis), models that include latent variables representing
unmeasured processes (confirmatory factor analysis), or models that link both path and confirmatory analysis
together. SEM is often referred to as causal analysis (Ullman, 2007) because the approach often is used to test
or confirm an a priori, hypothesized model (Austin, 2007). While SEM does not actually prove causality (Bollen
& Pearl, 2013; Weston & Gore, 2006), it does provide a framework for selecting or rejecting hypotheses based
on the empirical data (Iriondo et al., 2003). Examples include using SEM to model macroinvertebrate distribu-
tion in riverine ecosystems (Bizzi et al., 2013) and estuaries (Malaeb et al., 2000), aquatic and estuarine macro-
phytes (Gustaffson & Bostrom, 2013; Hung et al., 2007), lacustrine phytoplankton dynamics (Arhonditsis et al.,
2006; Korhonen et al., 2011; Liu et al., 2010), and methyl Hg cycling and bioaccumulation in the Florida
Everglades, including mediated effects of surface water sulfate (Pollman, 2014). In addition, SEM has been
used to construct models with a clear environmental management focus (La Peyre et al., 2001; Reckhow
et al,, 2005; Stober et al., 2001). For example, La Peyre et al. (2001) used SEM to model national wetland pro-
tection efforts as a function of five latent variables (defined as economic capital, social capital, government
characteristics, environmental characteristics, and land use pressure). Their model suggested that variations
in social capital had the greatest influence on wetland protection efforts and concluded that continued focus
on social development was necessary to further wetland protection.

2. Objectives and Conceptual Model

The objective of this paper is to use SEM to define the functional role of surface water concentrations of
sulfate vis a vis the development of pore water concentrations of sulfide, recognizing that the relationship
is complex and likely involves direct, mediated, and feedback pathways. Based on the functional relationships
we believe a priori to be important, we can construct a conceptual model that reflects those relationships and
use SEM to test both the overall reasonableness of the model and the significance and importance of the
individual components or pathways. Conceptually, our model has four components. The first component
considers that the magnitude of sulfide production in the sediment pore water expectedly is related to
sulfate concentrations in the water column (e.g.,, Cook & Schindler, 1983; Geurts et al., 2009; Siver et al.,
2003; Myrbo, Swain, Johnson, et al., 2017). The second component is that the availability of sedimentary
organic carbon can limit sulfate reduction (Al-Raei et al., 2009; Glombitza et al., 2013). The third component
is that amorphous FeS or mackinawite formation governs the dynamics of pore water sulfide and
Fe(ll) concentrations:

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 3



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017JG003785

@-— Sed Total S

Sed TOC

Figure 2. Conceptual model for biogeochemical controls on pore water sulfide
in wetland sediments. Sed refers to sediment solid phase concentrations
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Figure 1. Key bivariate relationships for pore water sulfide relevant to assumptions in conceptual sulfide model. Left-hand
panel: HS™ concentrations as a function of measured total pore water sulfide. HS™ concentrations based on acidity
constants for H,S and measured pore water pH. Right-hand panel: total dissolved pore water Fe concentrations as a
function of measured total pore water sulfide. All variables are log; o molar concentrations. Solid lines denote line of best fit
obtained from linear regression. The 70.4% of the variance in the calculated values of the (log;-transformed) concentra-
tion of HS ™ is due to the variance in (log;q-transformed) concentrations of total sulfide; shared variance between total
sulfide and the pH-dependent speciation fraction for HS accounts for another 5.0%. The coefficient of determination for
the pore water Fe and total sulfide relationship (both variables logq transformed) is 0.547 (p < 0.0001).

Fe(ll) + HS~>FeS + H* (1)

Inherent in our implementation of the model is the notion that pore water concentrations of total sulfide are
a reasonable proxy for HS™. Given that assumption, pore water Fe(ll) and total sulfide concentrations should
be inversely related (cf. Maynard et al., 2011); both assumptions are borne out by bivariate plots of the vari-
ables of interest (Figure 1; see also Myrbo, Swain, Engstrom, et al., 2017) constructed from our field data (see
section 3.1 below). The last component of the conceptual model is that
sediment Fe concentrations influence the pore water Fe concentrations
that can develop under reducing conditions. This is an extension of the
S04 fact that sediment Fe must be present for dissolved Fe(ll) concentra-
tions to develop in the pore water, unless an alternative source of dis-
solved Fe(ll) such as via shallow groundwater discharge is important.

The resultant conceptual model is shown schematically in Figure 2 and
includes pore water sulfide, pore water Fe, and sediment total sulfur (S)
as dependent or endogenous variables and sulfate, sediment Fe, and

\ sediment total organic carbon (TOC) as independent or exogenous

Total §* <-@ variables. The model also includes a mediated pathway for the effect
of sulfate on pore water sulfide through links between sulfate and sedi-
ment total S and between sediment total S and pore water sulfide. This
mediated pathway considers that a second route for sediment sulfur
accretion is by biogenic uptake of sulfate in the water column (Pérez-
Castifieira et al., 1998) followed by deposition to and incorporation
PW Fe __@ within the bottom sediments. An important feature of the conceptual

model is that, consistent with the thermodynamic or equilibrium chem-
istry defined by equation (1), the link between pore water sulfide and
Sed Fe Fe is nonrecursive rather than recursive. Recursive models allow for
causation to flow in a single direction only, while nonrecursive models
allow for feedback relationships such as the thermodynamic relation-
ship between pore water Fe(ll) and HS™. While the use of nonrecursive

(mass parameter per dry mass sediment). PW Fe is pore water Fe; total S, is models to model aquatic ecosystems has precedent—for example,

total pore water sulfide, and SOy is surface water SOg4.

evaluating the reciprocal relationships between sediment substrate
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characteristics and seagrass density (Folmer et al,, 2012; van der Heide et al., 2011)—we believe that our use
of a nonrecursive SEM to model pore water chemistry is the first such application.

3. Materials and Methods
3.1. Data

The data used to construct and evaluate the structural equation (SE) model were collected by the MPCA as
part of a field survey designed to investigate the relationship between physical and chemical conditions in
shallow waterbodies and the presence and absence of wild rice (Myrbo, Swain, Engstrom, et al., 2017). The
field survey included pilot sampling conducted in 2011 comprising 58 samples collected from 48 different
lake and stream sites, followed in 2012 and 2013 by a field survey that was broadened to include more sites
with elevated sulfate concentrations and 7 different cultivated wild rice paddies. The broader survey included
121 different waterbodies, of which 40 were sampled on multiple occasions across time (2 to 6 times, except
for one site sampled 10 times). The broader survey also included some sites that were also sampled during the
pilot survey; thus, the total number of unique sites sampled during the entirety of the 3 year field survey
included 131 different sites, with a total of 260 site visits. Field sampling included surface water, sediment,
and pore water samples for a variety of physical, chemical, and habitat related variables, although some site
visits were not able to collect the full suite of samples. Sampling protocols and methods for more than 65
parameters potentially measured at each site are detailed in Myrbo, Swain, Engstrom, et al., (2017).

Several considerations guided the selection of observations from the field survey data set for developing the
SE model. SEM is generally regarded as data intensive, although perhaps not more so than multivariate
regression (McCune & Grace, 2002). Estimates of minimum sample sizes to adequately conduct SEM vary
but generally are related to the complexity of the model. Simulation studies by Jackson (2003), for example,
suggest that improved model performance is achieved as the ratio of the number of observations to fitted
model parameters increases. Model performance, however, appears to be more sensitive to the absolute num-
ber of samples (Jackson, 2003), with a typical sample size for SE models published in the literature approximat-
ing 200 (Kline, 2011). As a result, our overarching principle in data selection was to maximize the number of
samples available to fit the model without compromising the integrity of the analysis. For example, we
excluded paddy sites from the wild rice model data set because modeling natural systems is our ultimate goal,
and paddies are manipulated in ways that likely cause the biogeochemistry to differ from natural sites. For
instance, N and P fertilizers are used and, in a fundamental departure from natural sites, paddies are dewa-
tered each summer, which may alter the oxidation state of the sediment. After eliminating paddies, we further
screened the data set to exclude those sites that did not have a complete set of measurements for surface
water sulfate, pore water sulfide, pore water Fe, sediment Fe, sediment TOC, and sediment total S. This latter
set of criteria also resulted in the exclusion of a relatively small number of samples. In an effort to assess poten-
tially redox-active Fe, sediment Fe in this data set was quantified using a 0.5 N HCl extraction (Myrbo, Swain,
Engstrom, et al., 2017), rather than a stronger acid digestion, which would have included relatively inert Fe.

We conducted preliminary multiple linear regression (MLR) analyses, using pore water sulfide as the depen-
dent variable and surface water sulfate, sediment TOC, and sediment Fe as the independent variables, to
identify possible outliers and influential observations. Based on the MLR analyses, we identified two clear out-
liers (Hoffs Slough and one sample from Sandy Lake) based on both inspecting model residuals and plotting
values for hat leverage versus Cook’s D distance (Hamilton, 2013). Hoffs Slough is a ditch in an agricultural
area, while the Sandy Lake observation is one of a total of 10 samples collected from Sandy Lake; as a result,
both outliers were excluded from further analysis. In addition, we excluded two observations with unusually
high pore water sulfide (Bean and Lady Slipper; pore water sulfide 16.0 and 14.8 mg/L, respectively; the next
highest sulfide concentration was 3.19 mg/L).

The resultant screened data set, which was named for internal purposes “Class D,” includes a total of 194
observations from 111 different waterbodies. This number of observations was considered sufficient to
engage in SEM given the relatively simple nature of the conceptual model and is consistent with the number
of observations used by many published studies (Kline, 2011). The data include 20 observations collected in
2011,107 in 2012, and 67 in 2013. Because 43 of the Class D sites were sampled more than once, we created a
subset called “Class B” with which to compare results. Class B consists of one sample from each site and
excludes samples collected in 2011, which were analyzed with slightly different lab methods (see Myrbo,
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Figure 3. Locations for lakes and stream sites (Class D and Class B) sampled by Myrbo, Swain, Engstrom, et al. (2017) used
to construct the SE model. Red-filled circles show sites that belong to both Class D and Class B data sets, while the

open circles show sites that belong solely to Class D. The single site in North Dakota (westernmost site) lies in the Great
Plains ecoregion.

Swain, Engstrom, et al., 2017). The Class B data thus include a set of 105 unique observations with a full
complement of measured model parameters, including 78 lake and 27 stream sites (Figure 3).

3.2, Statistical Analysis and Modeling

3.2.1. Model Estimation

We conducted all statistical analyses, including SEM, using Stata 14 (StataCorp, 2015). Two key underlying
assumptions with SEM are multivariate normality of the endogenous variables and linear relationships
between the endogenous and exogenous variables (Kline, 2011; Ullman, 2007). We log o-transformed all vari-
ables both to improve linearity and to yield variable distributions that more closely approximated normality,
although multivariate normality was not achieved.

When multivariate normality is uncertain, estimation methods that assume multivariate normality can pro-
duce misleading or incorrect estimates of the standard error of the individual model coefficients. Several
approaches are potentially useful when estimating SEM models with nonnormal multivariate data distribu-
tions. These methods include asymptotic distribution-free (adf) estimation (Acock, 2013; Kline, 2011),
bootstrapping (Acock, 2013; Mclntosh, 2007; Tomarken & Waller, 2005), and estimation using the Satorra-
Bentler scaled )(2 test (StataCorp, 2015; Tomarken & Waller, 2005). The adf method makes no assumptions
regarding data normality but may require in excess of 200 to 500 observations for even relatively simple mod-
els (Kline, 2011). Bootstrapping, which uses resampling with replacement of the individual observations to
produce estimates of the standard errors and resulting significance of the model coefficients, also makes

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 6



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017JG003785

no assumptions regarding underlying multivariate normality and thus produces more robust estimates of
coefficient confidence. The Satorra-Bentler test seeks to correct the » statistic by scaling the estimate based
on the kurtosis of the data (Kline, 2011). Initial analyses implemented all three methods. Bootstrapping was
conducted using 1,000 replications. We used comparative evaluations of the fitted model coefficients (the
adf method can yield model coefficients that differ compared to the maximum likelihood estimation used
by the bootstrapping and Satorra-Bentler methods) and their significance, which indicated that estimation
of the final model was relatively insensitive to the choice of estimation method coefficients. However,
because adf methods can be misleading with sample sizes of fewer than 200, final model estimation was
conducted using the Satorra-Bentler test and bootstrapping.

3.2.2. Model Robustness

A critical assumption that SEM shares with linear regression is that the underlying relationships between a
given endogenous variable and the variables that influence it are indeed linear. Unlike SEM, MLR has a rich
set of tools available for a variety of post hoc analyses to evaluate adherence to underlying model assump-
tions. Given the similarities between path analysis (of which our modeling herein is a form) and MLR (Li, 1975),
we verified linearity by initially conducting MLR on pore water sulfide concentrations using the same vari-
ables used to directly model pore water sulfide in the SE model. We then evaluated the presence of nonlinea-
rities and apparent outliers by constructing augmented component plus residual (ACPR) plots for each direct
independent variable (Hamilton, 2013; Mallows, 1986; see supporting information Figure S1).

3.2.3. Assessment of Goodness of Fit

We assessed model goodness of fit using several different metrics. Because SEM seeks to reproduce the
observed covariance matrix for the variables in the model, a primary metric for model performance is a
chi-square (%) test that assesses the magnitude and significance of the discrepancy between the fitted cov-
ariance matrix for the model in question and the observed covariance matrix. Restated, the y° statistic com-
pares the covariance matrix for the model we seek to evaluate with that of a model that has no degrees of
freedom and thus fits the observed data perfectly. The null hypothesis is that the two models are not differ-
ent. * p values <0.05 appear to be a commonly used threshold for rejecting the null hypothesis and thus
rejecting the model (e.g., Bizzi et al., 2013; Hayduk & Glaser, 2000; Hu & Bentler, 1999), although this threshold
is controversial (cf. Barrett, 2007; Lance et al.,, 2006; McIntosh, 2007).

The 4° test is the approach most used to evaluate the fit of SEM models (Grace, 2008) and was used in this study
as the initial criterion for retaining a given model. Other fit indices used as alternatives or adjuncts to the)(2 test
include both absolute and incremental or approximate fit indices (Hu & Bentler, 1999; Kline, 2011). Stata pro-
vides several alternative fit indices of both types, including the root-mean-square error of approximation
(RMSEA), the standardized root-mean-square residual (SRMR), the comparative fit index (CFI), and the Tucker-
Lewis index (TLI). Recommended target values for the RMSEA and SRMR are 0.05 and 0.08, respectively, while
values greater than 0.95 are recommended targets for both the CFl and TLI (Acock, 2013; Hu & Bentler, 1999).
3.2.4. Model Validation

We validated the SE model by conducting a “leave one out cross validation” or jackknife analysis where we
refit the SEM model by withholding a single observation from model estimation and then used the refit
model to predict the log;o-transformed value for pore water sulfide of the withheld observation. This process
was repeated for each of the observations comprising the Class D and Class B data sets. A major advantage of
this process is that it uses all of the available observations to both fit and validate the model.

3.2.5. Alternative Model Specifications

As mentioned previously, the issue of model specification is an important consideration. As a result, we also
expanded our conceptual model to consider several other model specifications. These models included

1. expanding the model to include sediment acid volatile sulfide (AVS). AVS is an operationally defined, reac-
tive sulfide fraction that is believed to comprise dissolved hydrogen sulfides and mackinawite (Morse &
Rickard, 2004) and thus arguably better represents the pool of reduced sedimentary sulfur actively
exchanging with pore water sulfide. A primary feature of this model thus was to include a second recipro-
cal relationship involving pore water sulfide—viz., a path between pore water sulfide and sediment AVS;

2. identifying pore water dissolved organic carbon (DOC) as an exogenous variable. The rationale behind
evaluating pore water DOC was twofold. First, DOC forms strong complexes with dissolved Fe** (Jansen
et al, 2002) that can then reduce the concentration of free Fe?* available to bind with sulfide and form
amorphous FeS or mackinawite. The SE model does not consider dissolved Fe or sulfide speciation, and
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Figure 4. Final SE model for biogeochemical controls on pore water sulfide in
wetland sediments. Final model extends conceptual model (Figure 1) by allow-
ing for the correlation of errors between pore water Fe and sulfide. The diagram
also shows the standardized path coefficient for each interaction pathway.

thus, inclusion of pore water DOC was considered as a first-order
approximation for evaluating the potential efficacy of modeling with
speciated values; and

3. including surface water total phosphorus (TP) as an exogenous vari-
able in the model. Increasing eutrophication is expected to increase
sulfide production and sedimentary AVS through both the stimula-
tory effects of additional phosphorus on bacterial activity and rates
of organic matter decomposition and through the increased deliv-
ery of autochthonous organic matter to the sediments, which in
turn serves as a substrate to drive the development of anaerobic
conditions and promote dissimilatory sulfate reduction. Anaerobic
conditions are a necessary prerequisite for the solubilization of solid
phase Fe(lll) through its reduction to Fe(ll). This alternative model
thus considered direct pathways between TP and both pore water
Fe and sediment AVS.

4, Results and Discussion
4.1. Model Fit and Evaluation With Class D data

The initial fit of the conceptual model was conducted using maximum
likelihood estimation. This resulted in a model that performed reason-
ably well with respect to predicting the variations in the three endo-
genous variables (corrected ? values ranging from 0.582 to 0.650)
but also resulted in a y* value reflecting overall model fit that was unac-

ceptably large (32 = 35.54, degrees of freedom [df] = 4, and p < 0.0001). Evaluation of the effect of different
structural changes to the model that would result in statistically significant reductions in the ¥ value
(modification indices) indicated several choices: (1) linking sediment Fe (negatively) to pore water sulfide,
(2) linking either or both sulfate and sediment total sulfur directly (and negatively) to pore water Fe, and
(3) allowing the error terms for pore water Fe and sulfide to be correlated. Correlating the error terms recog-
nizes the possibility of either other variables missing from the model or sampling error (or both) affecting
both pore water Fe and sulfide. For example, both dissolved Fe and sulfide are highly sensitive to oxidizing
shifts in the redox environment of the pore water that potentially can occur during sampling or sample hand-
ling and transportation. The effect of such shifts in redox on both constituents is a reduction in concentration.
Given its current framework, the other possible choices for improving the overall fit of the model are more
reasonably considered only as indirect pathways and do not necessarily add to the conceptual understand-
ing of the model or otherwise lead to an improvement in the utility of the model. For example, the conceptual
model includes an indirect pathway defining the effect of sediment Fe on pore water sulfide. Allowing
sediment Fe to directly interact with pore water sulfide negates the statistical significance of this pathway;
removing the pathway in turn considerably weakens our ability to predict pore water sulfide.

As a result, we modified the conceptual model to allow error correlation between pore water Fe and sulfide
(Figure 4). The resultant x> value for the modified model was reduced to an acceptable level (x* = 1.110, df = 3,
and p = 0.775). In addition, the values for the incremental fit indices reported by Stata were all below recom-
mended target levels (Table 1). We further evaluated model fit by examining the matrix of fitted covariance
residuals (Table 2). Kline (2011) suggests that values >0.10 indicate that the model does not fit the covariance
matrix particularly well, and large residuals can provide guidance regarding possible modifications to
improve model fit (StataCorp, 2015). The maximum absolute value for the covariance residuals was 0.007,
which is well below this suggested threshold and provides further confidence that the fitted model is well

supported by the data.

Model estimation of the modified conceptual model conducted by bootstrapping and the Satorra-Bentler
method both verify that the model overall fit is good (y*> = 0.998, p = 0.874, and Table 1) and that the
estimates of the model coefficients are highly significant when accounting for multivariate nonnormality.
With the exception of the path coefficient for the effect of sediment total sulfur on pore water sulfide
(p =0.011), all path coefficients had p < 0.001. We estimated the fit between each observed and predicted
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Table 1

Comparison of Goodness of Fit Statistics Resulting From Fitting the Pore Water Sulfide SEM Model to the Class D and Class B Data Sets

Metric Threshold or target value Class D Class B Class B (no sediment TS)
)(Z—degrees of freedom 3 3 1

XZ (maximum likelihood) 1.110 3.019 2.268
p > ;(2 (maximum likelihood) >0.05 0.775 0.389 0.132
x~ (Satorra-Bentler) 0.998 3.000 2.098
p> ;{2 (Satorra-Bentler) >0.05 0.802 0.392 0.148
RMSEA? (maximum likelihood) 0.05 <0.001 0.008 0.110
RMSEA (Satorra-Bentler) 0.05 <0.001 <0.001 0.102
90% Clb, lower bound 0 <0.001 <0.001 <0.001
90% Cl, upper bound 0.1 0.080 0.165 0.308
p RMSEA < 0.05 0.874 0.501 0.182
Comparative fit index (maximum likelihood) 0.95 1.000 1.000 0.993
Tucker-Lewis index (maximum likelihood) 0.95 1.014 1.001 0.954
Comparative fit index (Satorra-Bentler) 0.95 1.000 1.000 0.994
Tucker-Lewis index (Satorra-Bentler) 0.95 1.016 1.001 0.959
SRMR® 0.08 0.007 0.017 0.020
Residuals coefficient of determination 0.959 0.974 0.947
Stability index 0.687 0.733 0.786
Pore water total sulfide (logqq-transformed) coefficient of determination® 0.622 0.633 0.623
Pore water Fe (logqo-transformed) coefficient of determination 0.685 0.687 0.676
Sediment total S (logqo-transformed) coefficient of determination 0.650 0.697

N 194 105 105

Note. Pore water sulfide coefficient of determination is the Bentler-Raykov squared multiple correlation coefficient. g
FRMSEA—root-mean-square error of approximation. ~Cl—confidence interval. “SRMR—standardized root-mean-square residual. “Bentler-Raykov squared

multiple correlation coefficient.

endogenous variable using the Bentler-Raykov squared multiple correlation coefficient (StataCorp, 2015).
This coefficient is a corrected version of the coefficient of determination (%) that should be implemented
when evaluating the explained variance of variables in nonrecursive models that have reciprocal
causations such as pore water Fe and sulfide. Corrected r? values ranged from 0.622 to 0.685 for pore
water sulfide and Fe, respectively (Table 1). Figure 5 plots the actual fit between observed and predicted
values for logo-transformed pore water sulfide. Included in the plot is a locally weighted scatterplot
smoothing (LOWESS) curve that is useful for elucidating any undesired curvilinearity in the predicted
relationship. The LOWESS curve shows no such evidence.

One concern with nonrecursive models relates to possible inherent instabilities owing to the fact that vari-
ables involved in feedback relationships are dependent upon themselves. The potential for such instability
is evaluated through a stability index that estimates whether direct effects influencing variables in the model
can become infinitely larger (Kline, 2011). Stata uses the method of Bentler and Freeman (1983) to calculate
this index. Stability requires that the index value be less than 1; the stability index for the modified model was
0.687 (Table 1).

Results from jackknife cross-validation simulations showing the agreement between the full model predic-
tions and the out-of-sample predictions are shown in Figure 6. Those results illustrate that the out-of-sample
predictions closely match the predictions obtained from the fully calibrated model. As a result, the root-
mean-square error (RMSE) for the out-of-sample predictions (0.300) agrees well with, and is only slightly

Table 2

Matrix of Fitted Covariance Residuals for the Final SE Model Fitted With Class D Data (See Figure 4 for Model Structure)

Variable Pore water sulfide Pore water Fe Sediment total S Sulfate Sediment Fe Sediment TOC
Pore water sulfide 0.001

Pore water Fe —0.001 0.002

Sediment Total S 0.003 0.004 0.000

Sulfate —0.001 —0.007 0.000 0.000

Sediment Fe 0.002 0.001 —0.003 0.000 0.000

Sediment TOC 0.007 0.001 0.000 0.000 0.000 0.000
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Figure 5. Comparison of observed with predicted pore water sulfide (both logqg
transformed) for the SE model fit with Class D data. Plot includes lines showing
expected 1:1 fit and the fit obtained from LOWESS smoothing (bandwidth = 0.8).

larger than, the calibration RMSE 0.294. The jackknife analysis also
demonstrates no problems with unusually influential observations in
the Class D data set.

As mentioned previously, the Class D data set includes a number of
sites with multiple observations over time. The inclusion of sites with
multiple observations raises the possibility that the resultant model
errors are not truly independent from a spatial perspective, unless each
observation can be regarded as an independent characterization of the
biogeochemical quasi steady state existing among pore water, sedi-
ment, and surface water parameters. We tested the possibility of such
spatial autocorrelation of errors post hoc using analysis of variance
(ANOVA). The analysis focused on Class D sites with four or more obser-
vations (10 sites with 48 observations). Figure 7 is a box plot that shows
the distribution of model residuals for each of the sites with four or
more observations; the plot also includes the residuals distribution for
the remaining sites with only a single observation. The ANOVA indi-
cates no overall significant clustering of residual values related to inclu-
sion within a given site group (p = 0.541) and thus supports the use of
multiple observations from the same site.

4.2. Model Results With Class B Data

The conceptual model with linked covariance between the pore water Fe and sulfide error terms was fit with
the Class B data to further evaluate whether excluding sites with multiple observations would result in a sub-
stantively different set of results. Initial results indicated that the path between sediment total S and pore
water sulfide was no longer significant, although the overall fit was acceptable with the exception of the
upper limit for the RMSEA (Table 1). Thus, we refit the model without this pathway. In addition, eliminating
this pathway also rendered modeling sediment total S irrelevant; as a result, and in order to avoid biasing
the overall significance of the fit statistics, we dropped sediment total S from the model.

While the overall fit of the subsequent reduced form model is still significant (x* = 2.268 and p = 0.132), the
RMSEA values were further degraded, such that the RMSEA value itself, and not just the upper limit, was unac-

Full Model Prediction

-1.54

T T T
-2 -1.5 -1 -5 0 5
Cross-validation Prediction
Figure 6. Comparison of predictions of pore water sulfide (log;q transformed)

obtained for the SE model fit with Class D data and “out-of-sample” predictions
obtained from jackknife cross validation.

ceptably high. This degradation in model performance for both forms
of the model is likely more a reflection of using an inadequate number
of observations to fit the model, rather than a fundamental weakness in
the model structure. This evidenced by (1) the significance of all the
model path coefficients (all values of p < 0.002, with exception of the
sediment total S—pore water sulfide path coefficient) and (2) a com-
parison of the fitted model coefficients that express the total effect
(direct plus indirect) of all three exogenous variables influencing pore
water sulfide for the two Class B models and the Class D model
(Figure 8). This comparison shows that the differences in the coefficient
estimates are small and lie well within the coefficient standard errors.
Model integrity was further demonstrated by MLR conducted with
the Class B data using pore water sulfide as the dependent variable
and each of the SE model variables with direct paths to pore water sul-
fide. We constructed ACPR plots post hoc to evaluate linearity for each
connection. Those results, which are included in the supporting infor-
mation (Figures S2 and S3) confirm the underlying linearity of
these pathways.

4.3. Alternative Models

We compared the set of postulated alternative models with the original
model by evaluating both the suite of exact and approximate fit
statistics described previously as well as the Akaike and Bayesian
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Figure 7. Box and whisker plot of the distribution of model residuals for indivi-
dual sites with four or more observations. Each number on the abscissa
denotes a unique site except for “0,” which includes values for all sites (N = 68)
without multiple observations.

information criteria (AIC and BIC) values for each model. Comparing
AIC/BIC values are meaningful only if the same number of observations
is used to fit each model. Because several of the alternative models
included variables with a missing observation, all the models thus were
fit with the same set of reduced observations (N = 193).

The path diagrams for the original conceptual model along with each
of the alternative models are included in the supporting information
(Figures S4-S7). The diagrams depict the models in “final form” with
the fitted standardized coefficients; final form is intended to convey
that no further changes in the model structure are suggested by either
modification indices that are conceptually supportable or by eliminat-
ing nonsignificant (p > 0.05) pathways.

Based on x? values, the strongest models are the original model and
the conceptual model modified to include sediment AVS (AVS model,
Figure S6). This latter model includes a reciprocal relationship between
pore water sulfide and AVS, as well as direct pathways between sulfate
and sediment AVS and pore water Fe and AVS. This structure is consis-
tent with the hypothesis that increased sulfate leads to increased dis-
similatory sulfate reduction, and thus increases in AVS (Ramamoorthy
et al., 2009). While this model is conceptually more satisfying, it is not
necessarily superior to the original model for several reasons. First,
the value for the SRMR was somewhat higher for the AVS model
(0.013 versus 0.007). Second, AIC and BIC values indicate the original,

more parsimonious model is superior. Moreover, the ability to predict pore water sulfide, pore water Fe, or
sediment total sulfur is not markedly improved by inclusion of sediment AVS (Table S1). Lastly, including sedi-
ment AVS as an endogenous variable does not change the overall relationship between the exogenous vari-
ables and the endogenous variables of interest. This is illustrated in Table S2, which compares the total effects
of a given variable on a specific endogenous variable. Using pore water sulfide as an example, the coefficient

o so4
[ ] Sediment Fe
(] Sediment TOC

——

Parameter Coefficient

-0.5

Class D - Full Class B - Full Class B - Reduced
Figure 8. Comparison of the estimated coefficients depicting variable total
effect on pore water sulfide for the three exogenous variables included in the
SE model. The comparison includes fitting the SE model to the Class D and Class
B data to the full conceptual model and fitting the Class B data to the conceptual
model without including sediment total sulfur as a variable. Error bars are

standard errors for the individual coefficient estimates.

for the total effect of sulfate for the original and AVS models is 0.539
and 0.529, respectively; for sediment Fe and TOC, the coefficients are
—0.551 versus —0.557 and 0.515 versus 0.532, respectively.

The other two alternative models—inclusion of pore water DOC effects
on pore water sulfide and pore water Fe (Figure S5) and inclusion of
sediment AVS, pore water DOC, and surface water TP effects (Figure
S7)—were somewhat inferior models, although both models were well
supported based on »? significance. In particular, weaker model fits
were suggested based on an unacceptably high RMSEA value for the
DOC model (0.058 compared to a guideline threshold of 0.05) and ele-
vated RMSEA value for the AVS-DOC-TP model (0.028); this accordingly
resulted in lower probabilities that the RMSEA < 0.05. CFl and TLI values
were somewhat lower as well. While increasing TP concentrations can
directly promote higher rates of microbial activity, the lack of impor-
tance of TP in the models may indicate that the effects of TP on pore
water sulfide are predominantly indirect and exerted through its effect
on the accretion of sediment organic matter (which in turn stimulates
sulfate reduction). Because sediment organic matter content is only
weakly related to trophic state variables such as TP (cf. Brenner &
Binford, 1988) and more strongly reflects the physical depositional
environment, the statistical relationship between TP and sulfide
dynamics expectedly would be weak as well. Nonetheless, in fresh-
water wetlands such as portions of the Florida Everglades where high
sulfate loadings are coupled with high phosphorus loadings, extremely
high sulfide concentrations can occur, although the primary
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determinant appears to be high concentrations of sulfate more than
phosphorus (Figure S8 and data from Scheidt & Kalla, 2007).

S 4.4. Geochemical Implications

The core of the conceptual model is the reciprocal relationship

Saturation Index

o

Mineral Phase between pore water concentrations of Fe and sulfide, and which is
] Mackinawite embodied in the equilibrium dynamics of amorphous FeS or mackina-
[C] Amorphous Fes wite precipitation and dissolution (equation (1)). We can test this

hypothesis by calculating the ratio of the ion activity products (IAP)
for equation (1) to the equilibrium solubility product constant (Kp)
for both solid phases (107>°"> and 107*%*8 for amorphous FeS and
mackinawite, respectively) (Parkhurst & Appelo, 2013). Log ratios or
saturation index (SI) values in excess of 0 suggest supersaturation,

while values less than 0 are indicative of under or subsaturation

Figure 9. Distribution of amorphous FeS and mackinawite saturation index (SI)  (Appelo & Postma, 2010). Free concentrations of Fe?* and HS™ were
values calculated for the Class D data set. Values greater than 0 indicate super-  calculated based on measured pore water pH, and the hydrolysis con-

saturation, while values less than 0 indicated undersaturation.

stant for Fe?* and dissociation constants for H,S (Parkhurst & Appelo,
2013). Because they do not include corrections for ionic strength nor
the possible effects of other ions such as DOC effects on Fe2* speciation, the resultant IAP values are biased
somewhat high. Thus, these Sl calculations can provide evidence only of conditions not sufficiently adequate
for amorphous FeS or mackinawite precipitation to occur, rather than confirm that either phase is controlling.

The distribution of Sl values calculated for both mineral phases are shown in the box plot contained within
Figure 9. Only a small fraction of Class D sites had Slnackinawite < 0 (6.7%), with over 75% of the sites
suggesting supersaturation by an order of magnitude. Slges values were, by definition, lower but still largely
supportive of supersaturation (84% of the sites with values S| > 0). Holdren and Armstrong (1986) conducted
similar IAP calculations for Lake Mendota sediments and, based on those calculations, concluded that FeS
precipitation may control Fe solubility in sediment pore waters as well.

Our SE modeling coupled with the Sl calculations thus suggest a solid aqueous phase dynamic between Fe
supply and sulfide sequestration that buffers the evolution of pore water sulfide concentrations resulting
from dissimilatory sulfate reduction. This buffering system is well recognized—for example, Heijs et al.
(1999) developed a quantitative measure for the ability of sediments to buffer free >~ concentrations depen-
dent on the availability of both Fe(ll) and Fe(lll). In part, this buffer system includes the reduction of Fe(lll)
minerals such as ferrihydrite by H,S, leading to the formation of metastable FeS (Poulton et al., 2002).

It should be noted that sediment organic matter also can react with sulfides to form organic sulfur, including
thiols, organic monosulfides, and organic disulfides (Zeng et al., 2013), and that this pathway can be an
important removal mechanism for pore water sulfide in many lakes (e.g., Holmer & Storkholm, 2001; Rudd
et al, 1986; Urban et al., 1999). Moreover, this mechanism may be particularly important as a constraint on
pore water sulfide concentrations in aquatic ecosystems where low iron availability is coupled with high sedi-
ment organic content. Because the SE model does not include a sediment organic S-sulfide relationship,
modifying the SE model to account for organic sulfur formation likely will be important if it is extended to
such ecosystems.

A key advantage of the SE model is that it provides a framework for quantifying the relative effects of differ-
ent variables on pore water sulfide concentrations. Such an analysis can include direct effects, indirect effects,
and total effects. Placing the effects of different variables in context with each other is perhaps most easily
understood through the use of standardized coefficients. Standardized coefficients give the corresponding
response relative to a single standard deviation for a dependent variable when a given independent variable
has been increased by a single standard deviation. As such, standardized coefficients provide a convenient
means for directly comparing the relative importance or strength of association of different independent
variables, while the unstandardized coefficients reflect the form of the relationship (Acock, 2013).

Figure 10 compares the standardized coefficients for model variable effects on pore water sulfide. These
results indicate that internal dynamics between pore water Fe and sulfide exert the greatest degree of con-
trol on pore water sulfide (standardized coefficients for total effects equal to —1.37 and 0.90, respectively).

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 12



@AG U Journal of Geophysical Research: Biogeosciences

10.1002/2017JG003785

.51
<
S
‘T 04 Effect
[$) )
et [ ] pirect
s [ Indirect
g -5 . Total
el
C
ot
17

_1 4

-1.59

Sulfide Fe SedTS SO4 SedFeSedTOC

Figure 10. Standardized coefficients for direct, indirect, and total effects of each
of the variables influencing pore water sulfide in the SE model. The use of
standardized coefficients allows direct comparison of the relative importance of
each variable relationship on variations in pore water sulfide, while the
estimated coefficients (cf. Figure 8) allow one to estimate the marginal or
instantaneous effects of changing a given exogenous variable on pore water
sulfide while holding all other exogenous variables constant. Note that cate-
gories labeled as “sulfide” and “Fe” refer to pore water.

The effect of pore water sulfide on itself is of course indirect and
exerted through its direct relationship with pore water Fe. The effect
of pore water Fe in turn is largely direct, although it also exerts a sub-
stantial indirect effect through the pore water Fe-pore water sulfide
feedback loop.

From a management perspective, the effects of the exogenous vari-
ables are of particular interest. Our comparison indicates the magni-
tudes of relative total effects for the exogenous variables are nearly
identical: sulfate (0.54), sediment Fe (—0.55), and sediment TOC (0.52).
These results thus suggest that given their distributional characteristics
in our model data set, the ambient variations in each of the exogenous
variables contribute in nearly an equivalent manner to the observed
variations in pore water sulfide. In other words, while the importance
of the role of sulfate as a controlling variable for pore water sulfide con-
centrations is validated both conceptually and statistically with respect
to significance, the SE model also underscores the importance of the
sediment Fe buffering system and the effect of the availability of sedi-
ment organic matter. The practical consequence of this buffering
system is that the sensitivity of macrophytes such as wild rice that are
adversely impacted by the occurrence of sulfide is likely exacerbated
in sediments relatively low in iron. In such sediments, increases in
organic carbon and sulfate will, ceteris paribus, result in higher concen-
trations of sulfide (cf. Calleja et al. 2007).

5. Practical Application of the SE Model

The ultimate goal of the MPCA-sponsored field survey upon which this modeling effort is based (Myrbo,
Swain, Engstrom, et al., 2017) is to determine if it is appropriate to regulate sulfate and, if so, how to structure
the regulation in order to protect wild rice from exposure to pore water sulfide concentrations above a pro-
tective threshold—the identification of which is a separate task from the modeling exercise described here.
This modeling effort demonstrates that pore water sulfide concentrations can be successfully modeled with
three exogenous variables—sulfate, sediment TOC, and sediment Fe. The latter two measurements are the
average concentrations in the top 10 cm of sediment in a wild rice waterbody and likely reflect the natural
ambient condition of the wild rice habitat. Although our modeling shows that both sediment TOC and sedi-
ment Fe are important contributors to the toxic impacts of sulfide, regulating sulfate is the only viable
mechanism to protect wild rice against sulfide toxicity.

However, because each wild rice waterbody has different sediment TOC and Fe concentrations, any given
fixed sulfate standard applied to multiple wild rice waters would produce a wide range of sulfide concentra-
tions, some of which would likely be above the protective threshold. Because of the varying efficiency in con-
verting sulfate to sulfide, if the goal is to keep wild rice waters below a particular sulfide threshold, then
sulfate limits should be different for each waterbody.

To identify a protective sulfate concentration for a particular waterbody, it would be logical to employ the
relationships revealed by the SE model and to work backward from an identified protective sulfide threshold
to calculate a surface water sulfate standard tailored to the geochemistry of that particular waterbody. A
direct way to accomplish this task would be to first arrange the SE model into a single equation that
expresses pore water sulfide as a function of the exogenous variables in the model (sulfate, sediment Fe,
and sediment TOC). By substituting the protective sulfide concentration in for that variable and rearranging
the equation, a revised equation for the protective sulfate concentration as a function of Fe and TOC
concentrations can be derived. Such an equation could be applied to any wild rice waterbody for which

sediment Fe and TOC are known.

An important concern with the above approach, however, relates to both confidence intervals associated
with predicted sulfide concentrations and biases in predicted values resulting from back-transforming a
predicted log-transformed concentration to its original arithmetic form (Duan, 1983). Stata does not
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provide confidence intervals for predicted endogenous variables obtained from SEM. With respect to the
latter problem, solutions have been proposed (Duan, 1983; Manning & Mullahy, 2001), but they
are complicated.

There are at least two approaches toward resolving the difficulty of practicably using the SEM results to pre-
dict sulfate concentrations that reflect a target or threshold pore water sulfide concentration. Both
approaches rely on the SE model to define the driving variables of interest—viz., sediment Fe and TOC
and surface water sulfate. The first approach uses generalized linear modeling with an appropriate link func-
tion (in this case a log link for the dependent variable) and specification of the residual error distribution. This
approach capitalizes on the fact that path analysis and MLR are very similar (Li, 1975) and yield very similar
estimated model coefficients for predicting pore water sulfide; with proper error distribution specification,
it also avoids the issue of back-transformation bias. The second approach is multiple binary logistic regression
(MBLR). MBLR simulates the likelihood that the response variable of interest exceeds a defined threshold
given a set of independent variables. This type of binary response modeling is particularly well suited for
the management question of whether, ceteris paribus, a given sulfate concentration is likely to result in pore
water sulfide concentrations above or below a specified toxicity threshold. This approach also avoids the
problem of back-transformation bias.

A MBLR model can be developed using the same field data that were used to construct, calibrate, and vali-
date the SE model. MBLR would directly predict the probability of exceeding the protective sulfide
concentration threshold as a function of sulfate, Fe, and TOC. An acceptable probability threshold can then
be defined (for example, 0.5 or some other value; the choice would be a policy decision), and the model
used to “inverse” predict the sulfate concentration that will produce the threshold as a function of Fe and
TOC. Operationally, this equation to determine the protective sulfate threshold for any particular water-
body could then be applied in the same manner as the equation derived from the SEM, as
described above.

In summary, it is desirable to use SEM to better understand and characterize the relationships between the
important parameters in the system that relates sulfate and sulfide but then to use MBLR to translate the
understanding gleaned from SEM into a water quality standard for sulfate. A standard that is an equation,
rather than a uniform concentration that is applied to all waterbodies, would be a reflection of the biogeo-
chemical diversity of the environment. New approaches are needed as environmental regulation pro-
gresses from protecting organisms from pollutants that are directly toxic, to pollutants whose negative
effects are indirect and a function of environmental conditions that vary from site to site.

6. Conclusions

We used SEM to help elucidate and quantify the underlying structure of water quality and sediment chem-
istry variables governing the evolution of pore water sulfide concentrations in lakes and streams in the
Upper Midwest/Great Lakes region. Three key “external” variables were initially hypothesized to be impor-
tant—surface water sulfate, sediment Fe, and sediment TOC. Intermediate, mediating variables included pore
water Fe and sediment total sulfur. Inherent in the model structure is a reciprocal relationship between pore
water Fe and sulfide. This structure defines a sediment iron-based buffering system that is supported both
empirically by other observational studies in wetlands and conceptually by the thermodynamics of amor-
phous FeS or mackinawite dissolution. The conceptual structure of the SE model is well supported both by
model fit statistics and a suite of model diagnostic and post hoc analyses and by Sl analyses that suggest that
amorphous FeS or mackinawite precipitation-dissolution dynamics help control or impose constraints on the
reciprocal relationship between pore water Fe and sulfide. Our use of SEM to model pore water chemistry
dynamics, including the nonrecursive nature of those dynamics in particular, is believed to be the first such
application in the open literature.

An important consequence of the sediment buffering system is that it serves to help limit the effects of
increases in either surface water sulfate or sediment organic carbon on pore water sulfide. Based on total
effects estimated from the SE model, all three external variables all essentially equivalent in importance with
respect to influencing pore water sulfide. When considering the policy implications of trying to protect wild
rice against the toxic effects of sulfide by limiting sulfate inputs to the ecosystem, our results thus demon-
strate that the problem is multidimensional and that any such standard must consider the effects of
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ambient concentrations of sediment Fe and sediment TOC to ensure the imposed sulfate standard is neither
unduly or insufficiently protective. Multiple binary logistic regression would be a practical way to tailor sulfate
standards to the specific geochemistry of sites so that a uniform level of protection for organisms sensitive to
sulfide would be achieved.

References

Acock, A. C. (2013). Discovering Structural Equation Modeling Using Stata (Revised ed., pp. 306). College Station, TX: Stata Press.

Aiken, S. G. (1986). The distinct morphology and germination of the grains of two species of wild rice (Zizania, Poaceae), Can. Field Naturalist,
100(2), 237-240.

Aiken, S. G, Lee, P. F.,, Punter, D., & Stewart, J. M. (1988). Wild Rice in Canada( pp. 130). Toronto: NC Press Limited.

Al-Raei, A. M., Bosselmann, K., Béttcher, M. E., Hespenheide, B., & Tauber, F. (2009). Seasonal dynamics of microbial sulfate reduction in
temperate intertidal surface sediments: Controls by temperature and organic matter. Ocean Dynamics, 59(2), 351-370.

Appelo, C. A. J., & Postma, H. (2010). Geochemistry, Groundwater and Pollution (2nd ed., pp. 649). Boca Raton, FL: CRC Press.

Arhonditsis, G. B, Stow, C. A, Steinberg, L. J., Kenney, M. A,, Lathrop, R. C., McBride, S. J., & Reckhow, K. H. (2006). Exploring ecological patterns
with structural equation modeling and Bayesian analysis. Ecological Modelling, 192, 385-409.

Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological
Modelling, 200, 1-19.

Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 2, 815-824. https://doi.org/
10.1016/j.paid.2006.09.018

Bentler, P. M., & Freeman, E. H. (1983). Tests for stability in linear structural equation systems. Psychometrika, 48, 143-145.

Bizzi, S., Surridge, B. W. J., & Lerner, D. N. (2013). Structural equation modeling: A novel statistical framework for exploring the spatial
distribution of benthic macroinvertebrate in riverine ecosystems. River Research and Applications, 29, 743-759.

Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models, In S. L. Morgan (Ed.), Handbook of Causal Analysis
for Social Research (Chap. 15, pp. 301-328). New York: Springer.

Borum, J.,, Pedersen, O., Greve, T. M., Frankovich, T. A,, Zieman, J. C, Fourqurean, J. W., & Madden, C. J. (2005). The potential role of plant
oxygen and sulphide dynamics in dieoff events of the tropical seagrass, Thalassia testudinum. Journal of Ecology, 93, 148-158.

Brenner, M., & Binford, M. W. (1988). Relationships between concentrations of sedimentary variables and trophic state in Florida lakes.
Canadian Journal of Fisheries and Aquatic Sciences, 45, 294-300.

Calleja, M. L., Marba, N., & Duarte, C. M. (2007). The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater
concentration in carbonate sediments. Estuarine, Coastal and Shelf Science, 73, 583-588.

Capone, D. G, & Kiene, R. P. (1988). Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon
catabolism. Limnology and Oceanography, 33, 725-749.

van Cappellen, P., & Wang, Y. (1996). Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and
reaction of carbon, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296, 197-243.

Cook, R. B., & Schindler, D. W. (1983). The biogeochemistry of an experimentally acidified lake. Ecological Bulletins, 35, 115-127.

Cook, R. B., Kelly, C. A, Schindler, D. W., & Turner, M. A. (1986). Mechanisms of hydrogen ion neutralization in an experimentally acidified lake.
Limnology and Oceanography, 31, 134-148.

Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. J. American Statistical Association, 78, 605-610.

Eldridge, P. M., & Morse, J. W. (2000). A diagenetic model for sediment-seagrass interactions. Marine Chemistry, 70, 89-103.

Folmer, E. O, van der Geest, M., Jansen, E., OIff, H., Anderson, T. M., Piersma, T., & van Gils, J. A. (2012). Seagrass-sediment feedback: An
exploration using a non-recursive, structural equation model. Ecosystems, 15, 1380-1393.

Geurts, J. J. M,, Sarneel, J. M., Willers, B. J. C,, Roelofs, J. G. M., Verhoeven, J. T. A, & Lamers, L. P. M. (2009). Interacting effects of sulphate
pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment. Environmental Pollution,
157,2072-2081.

Glombitza, C., Stockhecke, M., Schubert, C. J., Vetter, A,, & Kallmeyer, J. (2013). Sulfate reduction controlled by organic matter availability in
deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Frontiers in Microbiology, 4, 1-12. https://doi.org/
10.3389/fmicb.2013.00209

Govers, L. L., de Brouwer, J. H. F., Suykerbuyk, W., Bouma, T. J., Lamers, L. P. M., Smolders, A. J. P., & van Katwijk, M. M. (2014). Toxic effects of
increased sediment nutrient and organic matter loading on the seagrass Zostera noltii. Aquatic Toxicology, 155, 253-260.

Grace, J. B. (2008). Structural equation modeling for observational studies. Journal of Wildlife Management, 72, 14-22.

Grace, J. B, Youngblood, A., & Scheiner, S. M. (2009). Structural equation modeling and ecological experiments, In S. Miao, S. Carstenn,

& M. K. Nungesser (Eds.), Real World Ecology: Large-Scale and Long-Term Case Studies and Methods (Chap. 2, pp. 19-45). New York: Springer.
https://doi.org/10.1007/978-0-387-77942-3_2

Gustaffson, C., & Bostrom, C. (2013). Influence of neighboring plants on shading stress resistance and recovery of eelgrass, Zostera marina L.
PLoS ONE, 8(5), e64064. https://doi.org/10.1371/journal.pone.0064064

Hamilton, L. C. (2013). Statistics With Stata: Updated for Version 12 (8th ed., pp. 473). Boston: Brooks/Cole.

Hansel, C. M., Lentini, C. J,, Tang, Y., Johnson, D. T., Wankel, S. D., & Jardine, P. M. (2015). Dominance of sulfur-fueled iron oxide reduction in
low-sulfate freshwater sediments. The ISME Journal 9, 2400-2412. https://doi.org/10.1038/isme;j.2015.50

Hayduk, L. A., & Glaser, D. N. (2000). Jiving the four-step, waltzing around factor analysis, and other serious fun. Structural Equation Modeling,
7,1-35.

Heijs, S. K., Jonkers, H. M., van Gemerden, H., Schaub, B. E. M., & Stal, L. J. (1999). The buffering capacity towards free sulfide in sediments of a
coastal lagoon (Bassin d’Arcachon, France)—The relative importance of chemical and biological processes. Estuarine, Coastal and Shelf
Science, 49, 21-35. https://doi.org/10.1006/ecss.1999.0482

Hines, M. E., & Jones, G. E. (1985). Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuarine,
Coastal and Shelf Science, 20, 729-742.

Holdren, G. C,, & Armstrong, D. E. (1986). Phosphorus release and mineral formation in lake sediments, In P. G. Sly (Ed.), Sediments and Water
Interaction, Proceedings of the Third International Symposium on Interactions Between Sediments and Water, held in Geneva, Switzerland,
August 27-31, 1984 (Chap. 12, pp. 133-147). New York: Springer-Verlag.

Holmer, M., & Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: A review. Freshwater Biology, 46, 431-451.

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 15



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017)G003785

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.
Structural Equation Modeling, 6, 1-55.

Hung, N. T, Asaeda, T., & Manatunge, J. (2007). Modeling interactions of submersed plant biomass and environmental factors in a stream
using structural equation modeling. Hydrobiologia, 583, 183-193.

Iriondo, J. M., Alber, M. J., & Escudero, A. (2003). Structural equation modelling: An alternative for assessing causal relationships in threatened
plant populations. Biological Conservation, 113, 367-377.

Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N:q hypothesis. Structural Equation
Modeling, 10(1), 128-141.

Jansen, B., Nierop, K. G. J., & Verstraten, J. M. (2002). Influence of pH and metal/carbon ratios on soluble organic complexation of Fe(ll), Fe(lll)
and Al(lll) in soil solutions determined by diffusive gradients in thin films. Analytica Chimica Acta, 454(2), 259-270.

Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling (3rd ed.). New York: The Guilford Press.

Koch, M. S., & Erskine, J. M. (2001). Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: Interactions with light, salinity and
temperature. Journal of Experimental Marine Biology and Ecology, 266, 81-95.

Korhonen, J. J,, Wang, J., & Soininen, J. (2011). Productivity-diversity relationships in lake plankton communities. PLoS ONE, 6(8), €22041.
https://doi.org/10.1371/journal.pone.0022041

La Peyre, M. K,, Mendelssohn, I. A, Reams, M. A, Templet, P. H., & Grace, J. B. (2001). Identifying determinants of nations’ wetland
management programs using structural equation modeling: An exploratory analysis. Environmental Management, 27, 859-868.

Lamers, L. P. M., Govers, L. L., Janssen, I. C. J. M., Geurts, J. J. M., Van der Welle, M. E. W., Van Katwijk, M. M., ... Smolders, A. J. P. (2013). Sulfide as
a phytotoxin—A review. Frontiers in Plant Science, 4, 268. https://doi.org/10.3389/fpls.2013.00268

Lance, C. E,, Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff criteria. What did they really say?
Organizational Research Methods, 9, 202-220.

Li, C. C. (1975). Path Analysis—A Primer( pp. 346). Pacific Grove, CA: Boxwood Press.

Li, S., Mendelssohn, I. A, Chen, H., & Orem, W. H. (2009). Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in
the Florida everglades? Freshwater Biology, 54, 1909-1923.

Liu, Y., Guo, H., & Yang, P. (2010). Exploring the influence of lake water chemistry on chlorophyll a: A multivariate statistical model analysis.
Ecological Modelling, 221, 681-688.

Malaeb, Z. A, Summers, J. K., & Pugesek, B. H. (2000). Using structural equation modeling to investigate relationships among ecological
variables. Environmental and Ecological Statistics, 7, 93-111.

Mallows, C. L. (1986). Augmented partial residuals. Technometrics, 28, 313-319.

Manning, W. G., & Mullahy, J. (2001). Estimating log models: To transform or not to transform? Journal of Health Economics, 20, 461-494.

Marba, N., Duarte, C. M., Holmer, M., Calleja, M. L., Alvarez, E., Diaz-Almela, E., & Garcias-Bonet, N. (2008). Sedimentary iron inputs stimulate
seagrass (Posidonia oceanica) population growth in carbonate sediments. Estuarine, Coastal and Shelf Science, 76, 710-713.

Maynard, J. J., O'Geen, A. T., & Dahlgren, R. A. (2011). Sulfide induced mobilization of wetland phosphorus depends strongly on redox and
iron geochemistry. Soil Science Society of America Journal, 75, 1,986-1,999.

McCune, B., & Grace, J. B. (2002). Analysis of Ecological Communities. Gleneden Beach, OR: MJM Software Design.

MclIntosh, C. N. (2007). Rethinking fit assessment in structural equation modelling: A commentary and elaboration on Barrett (2007).
Personality and Individual Differences, 42, 859-867.

Morse, J. W., & Rickard, D. (2004). Chemical dynamics of sedimentary acid volatile sulfide. Environmental Science and Technology, 38(7),
31A-136A. https://doi.org/10.1021/es040447y

Moyle, J. B. (1944). Wild rice in Minnesota. Journal of Wildlife Management, 8(3), 177-184.

Myrbo, A., Swain, E. B., Engstrom, D. R,, Coleman Wasik, J., Brenner, J., Dykhuizen Shore, M., ... Blaha, G. (2017). Sulfide generated by sulfate
reduction is a primary controller of the occurrence of wild rice (Zizania palustris) in shallow aquatic ecosystems. Journal of Geophysical
Research: Biogeosciences, 122. https://doi.org/10.1002/2017JG003787

Myrbo, A., Swain, E. B, Johnson, N. W., Engstrom, D. R,, Pastor, J., Dewey, B,, ... Peters, E. B. (2017). Increase in nutrients, mercury, and
methylmercury as a consequence of elevated sulfate reduction to sulfide in experimental wetland mesocosms. Journal of Geophysical
Research: Biogeosciences, 122. https://doi.org/10.1002/2017JG003788

Orth, R. J,, Carruthers, T. J. B, Dennison, W. C,, Duarte, C. M., Fourqurean, J. W., Heck, K. L., ... Williams, S. L. (2006). A global crisis for seagrass
ecosystems. Bioscience, 56, 987-996.

Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation,
Batch- Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological Survey Techniques and Methods (Book 6,
Chap. A43, 497 pp). Denver, CO: U.S. Geological Survey. http://pubs.usgs.gov/tm/06/a43

Pastor, J.,, Dewey, B., Johnson, N. W., Swain, E. B, Monson, P., Peters, E. B., & Myrbo, A. (2017). Effects of sulfate and sulfide on the life cycle of
wild rice (Zizania palustris) in hydroponic and mesocosm experiments. Ecological Applications, 27(1), 321-336.

Pérez-Castifeira, J. R, Prieto, J. L., Gonzalez-Arroyo, J. G., & Vega, J. M. (1998). Kinetic properties of sulfate uptake in two types of eukaryotic
green microalgae. Journal of Plant Physiology, 153, 324-331.

Perry, T.E., Baker, L. A, & Brezonik, P. L. (1986). Comparison of sulfate reductions rates in laboratory microcosms, field microcosms, and in situ
at Little Rock Lake, Wisconsin. Lake and Reservoir Management, 2(1), 309-312.

Pollman, C. D. (2014). Mercury cycling and trophic state in aquatic ecosystems: Implications from structural equation modeling. Science of the
Total Environment, 499, 62-73.

Poulton, S. W., Krom, M. D., Van Rijn, J., & Raiswell, R. (2002). The use of hydrous iron (lll) oxides for the removal of hydrogen sulphide in
aqueous systems. Water Research, 36, 825-834.

Ramamoorthy, S., Piotrowski, J. S., Langner, H. W., Holben, W. E., Morra, M. J., & Rosenzweig, R. F. (2009). Ecology of sulfate-reducing bacteria
in an iron-dominated, mining-impacted freshwater sediment. Journal of Environmental Quality, 38(2), 675-684.

Reckhow, K. H., Arhonditsis, G. B., Kenney, M. A, Hauser, L., Tribo, J,, Wu, C,, ... McBride, S. J. (2005). A predictive approach to nutrient criteria.
Environmental Science & Technology, 39, 2913-2919.

Rudd, J. W. M., Kelly, C. A, & Furutani, A. (1986). The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake
sediments. Limnology and Oceanography, 31, 1281-1291.

Scheidt, D. J. and P. I. Kalla (2007). Everglades ecosystem assessment: Water management and quality, eutrophication, mercury
contamination, soils and habitat: monitoring for adaptive management: A R-EMAP status report. USEPA Region 4, Athens, GA. EPA 904-R-
07-001 (98 pp). Retrieved from http://www.epa.gov/region4/sesd/reports/epa904r07001/epa904r07001.pdf

Sinke, A. J. C, Cornelese, A. A, Cappenberg, T. E., & Zehnder, A. J. B. (1992). Seasonal variation in sulfate reduction and methanogenesis in
peaty sediments of eutrophic Lake Loosdrecht, The Netherlands. Biogeochemistry, 16, 43-61.

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 16



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017)G003785

Siver, P. A, Ricard, R, Goodwin, R., & Giblin, A. E. (2003). Estimating historical in-lake alkalinity generation from sulfate reduction and its
relationship to lake chemistry as inferred from algal microfossils. Journal of Paleontology, 29, 79-197.

StataCorp (2015). Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.

Stober, Q. J., Thornton, K., Jones, R, Richards, J., Ivey, C., Welch, R, ... Rathbun, S. (2001). South Florida ecosystem assessment: Phase I/I|
(technical report)—Everglades stressor interactions: Hydropatterns, eutrophication, habitat alteration, and mercury contamination. EPA
904-R-01-003. September 2001. Retrieved from http://www.epa.gov/region4/sesd/reports/epa904r01002.html. Date last accessed,
August 9, 2014

Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical
Psychology, 1, 31-65.

Ullman, J. B. (2007). Structural equation modeling. In B. G. Tabachnick, & L. S. Fidell, Using Multivariate Statistics (5th ed., Chap. 14, pp. 676-780).
Boston: Allyn and Bacon.

Urban, N. R, Ernst, K, & Bernasconi, S. (1999). Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochimica et
Cosmochimica Acta, 63, 837-853.

van der Heide, T., van Nes, E. H., van Katwijk, M. M., OIff, H., & Smolders, A. J. P. (2011). Positive feedbacks in seagrass ecosystems—Evidence
from large-scale empirical data. PLoS ONE, 6(1), e16504. https://doi.org/10.1371/journal.pone.0016504

Vennum, T. Jr. (1988). Wild Rice and the Ojibway People (pp. 358). St. Paul, MN: Minnesota Historical Society Press.

Weston, R, & Gore, P. A. Jr. (2006). A brief guide to structural equation modeling. The Counseling Psychologist, 34(5), 719-751. https://doi.org/
10.1177/0011000006286345

Zeng, T., Arnold, W. A,, & Toner, B. M. (2013). Microscale characterization of sulfur speciation in lake sediments. Environmental Science &
Technology, 47, 1287-1296.

POLLMAN ET AL.

SO,4, SEDIMENT TOC, AND IRON CONTROL SULFIDE 17



