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Abstract 

“Tailings storage facilities typically represent the most significant environmental liability associated with 
mining operations.” (MMSD, 2002, p. 2)   

Large tailings dams built to contain mining waste, among the largest dams and structures in the world, 
must stand in perpetuity.  A catastrophic release of a large amount of tailings could lead to long term 
environmental damage with huge cleanup costs.  Tailings dams have failed at a rate that is significantly 
higher than the failure rate for water supply reservoir dams.  The causes for the higher incidence of 
tailings dam failures between tailings and water supply reservoir dams are probably shaped by two 
factors: (1) the ability to use construction types for tailings dams that are more susceptible to failure; and, 
(2) the fact that tailings dams are most often constructed in sequential ‘lifts’ over several years that make 
quality control more challenging relative to water supply dams that are constructed all at once. 

We know that our technology and science have limits, and that there are significant economic incentives 
to make present day decisions about risk less, rather than more, conservative about the magnitude of these 
risks.  In looking at the long term risk from tailings impoundments to other resources, policy makers 
should view the risks from a conservative probabilistic perspective rather than relying on assumptions 
about specific hazards that are likely flawed.   

 

Long Term Tailings Dam Stability 

Tailings impoundments have been around for about a century.3  The construction and care of a tailings 
dam is a relatively new phenomenon to society and to mining, which historically disposed of its waste in 
the most convenient way.  Tailings dams are also fundamentally different from water supply dams in 
several respects.   

“Conventional dams generally do not need to be designed to last forever, as they have a finite life. 
Tailings dams have a closure phase as well as an operational phase.  They have to be designed and 
constructed to last “forever”, and require some degree of surveillance and maintenance long after the 
mining operation has shut down, and generation of cash flow and profit has ceased.” (MMSD, 2002, 
p. 8) 

 “Conventional dams are viewed as an asset. As a result, their construction, operation, and 
maintenance receives a high standard of care and attention from owners, who often retain in-house 
dam engineering expertise. Contrast this to tailings dams, which have until recently been viewed by 
their owners as an unprofitable, money-draining part of the mining operation.  The significance of 
this aspect is that with such attitudes a mining operation would be naturally less inclined to expend 
effort in the management of its tailings facility than the owner of a conventional dam.” (MMSD, 2002, 
p. 8) 

Tailings dams differ from water supply reservoir dams in two significant ways – dam design life, and dam 
construction design.   

                                                                                          

1 Center for Science in Public Participation, 224 North Church Avenue, Bozeman, MT 59715, Ph. 406-585-9854, email: 
dchambers@csp2.org 
2 Ground Truth Trekking, PO Box 164, Seldovia, AK  99663, Ph: (907) 399 5530, email: hig314@gmail.com 
3 See MMSD, 2002, for a short summary of the history of modern mining. 
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Regulatory Framework 

The design standards for most tailings dams are determined by state dam safety agencies.  Although there 
are hazard classification and earthquake analysis guidelines for dams published by the Federal Emergency 
Management Agency (FEMA), these guidelines are oriented toward water reservoirs, and do not 
specifically address tailings dams.12   

Closely following the FEMA recommendations are guidelines for coal tailings dams, but these guidelines 
do not address the much larger and potentially more damaging metal-mine tailings dams.13  There are no 
definitive federal regulations governing the construction and operation of metal-mine tailings dams, and 
only minimal federal involvement in the design of metal-mine tailings dams, usually only when there is a 
lack of state oversight.14   

The standards that do exist often lack specificity, and implementation of the standards depend in large 
part on the professional judgment and experience of company consultants and government regulators.  
While this builds regulatory and site-specific flexibility into permits for tailings dams, it also means that 
critical specifications are often left for company consultants to define, and regulators to approve.   

Hydrology-Related Risk 

“Lack of control of the hydrological regime is one of the most common causes of failure. Of the cases 
reported here, the majority of failures were due to overtopping, slope instability, seepage and erosion; 
all caused by a lack of control of the water balance within the impoundments.”  (ICOLD, 2001, p. 31) 

The water storage capacity of a tailings dam and the water release capacity, via a spillway, is governed by 
the choice of the maximum hydrologic event (storm and/or snow melt) that the facility will experience 
over its life.  Guidance for determination of the design flood event to be used for mine closure has been 
evolving, and is still in flux.  In 1995, the International Commission on Large Dams suggested that the 
Probable Maximum Flood be used as the design standard, but left the possibility of utilizing a lesser event 
open to consideration. 

“As in the case for the operating dam, hydrological criteria for safety of the dam after closure must be 
carefully considered.  The Probable Maximum Flood should be considered for this evaluation 
although the 100-year design flood is often accepted for this purpose.” (ICOLD, 1995c, p. 81) 

Six years later the International Commission on Large Dams took a stronger stand, recommending that 
the Probable Maximum Flood, not a lesser event, be used as the design event for mine closure. 

"All impoundments and their retaining dams need to be able to accommodate extreme hydrologic 
events, up to the Probable Maximum Flood." (ICOLD, 2001, p. 31) 

Yet even today the design hydrologic event for dam construction may not be the Probable Maximum 
Flood, but a lesser event.  The choice of a lesser event makes dam construction less expensive, and is 
often justified by evaluating the risk of potential impacts of dam failure.  The risks evaluated are most 
often focused on the potential for loss of human life and damage to existing infrastructure.  Long-term 
environmental impacts and cleanup costs are not emphasized, and often not considered. 

                                                                                          

12 Federal Emergency Management Agency (FEMA), 2005, Federal Guidelines for Dam Safety, Earthquake Analyses and 
Design of Dams, FEMA 65, U.S. Department of Homeland Security, FEMA, Washington, DC.; and, Federal Emergency 
Management Agency (FEMA), 2004, Federal Guidelines for Dam Safety: Hazard Potential Classification System for Dams, 
FEMA 333, Interagency Committee on Dam Safety (ICODS), Washington, DC 

13 Mine Safety and Health Administration (MSHA), 2009, Engineering and Design Manual, Coal Refuse Disposal Facilities, 
prepared by D'Appolonia Engineering, May 2009 
14 For example the Army Corps of Engineers, the US Forest Service, or Bureau of Land Management might be involved in 
tailings dam design if there is no state oversight of dam design for a mining project that requires a federal permit. 
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Meteorological events led to most of the tailings dam failures, with seismic events triggering the second 
most failures (Rico, et. al., 2008a, p. 846).  Upstream-type dam construction was involved with more of 
these incidents than any other type (Rico, et. al., 2008a, p. 849). 

Seismic Safety Standards for Tailings Dams 

There is a risk that a large earthquake might cause catastrophic failure of a tailings dam, with the release 
of a large amount of tailings, and could lead to long term environmental damage with huge cleanup costs.  
The probability of such a catastrophic failure is low, but the consequences should it occur are very high.  
Cleanup costs are usually borne by the public, and if the tailings are not cleaned up, then the long term 
environmental and social costs would also be borne by the public. 

When planning a dam, the design seismic event is often described with two terms, the Operating Basis 
Earthquake and the Maximum Design Earthquake.  The Operating Basis Earthquake (OBE) represents the 
ground motions or fault movements from an earthquake considered to have a reasonable probability of 
occurring during the functional life-time of the project (Alaska Department of Natural Resources, 2005, p. 
6-6).  The Maximum Design Earthquake (MDE) represents the ground motions or fault movements from 
the most severe earthquake considered at the site, relative to the acceptable consequences of damage in 
terms of life and property (Alaska Department of Natural Resources, 2005, p. 6-6, 6-7).  Since a tailings 
dam must stand in perpetuity, the Operating Basis Earthquake should be equivalent to the Maximum 
Design Earthquake.   

The estimated largest earthquake that could occur at any given location is called the Maximum Credible 
Earthquake.  The Maximum Credible Earthquake (MCE) is defined as the greatest earthquake that 
reasonably could be generated by a specific seismic source, based on seismological and geologic evidence 
and interpretations (Alaska Department of Natural Resources, 2005, p. 6-6).  The Maximum Credible 
Earthquake is often associated with a recurrence interval of 10,000 years.15   

Existing regulatory guidelines for the choice of the location of the Maximum Design Earthquake or 
Maximum Credible Earthquake, which do not specifically consider metal-mine tailings dams, leave the 
final location of these seismic events for project-related experts to determine.  For most projects 
engineering experts from consulting firms, hired by mining companies, use deterministic or probabilistic 
methods to select the location and size of the Maximum Credible Earthquake and/or Maximum Design 
Earthquake.  This is a complex process, and regulators are typically involved only at an approval level, 
not in the detailed analysis. 

Engineering consultants are not experts on determining the amount of risk that is appropriate in 
determining public policy.  Public policy determinations on risk are typically reflected in regulatory 
requirements, but for the determination of the size of the Maximum Credible Earthquake and/or 
Maximum Design Earthquake for a tailings dam there is a great deal of regulatory flexibility, often 
exercised by one regulator.   

Choice of the “Design Event” – How Large and How Far Away? 

For tailings dams the Maximum Design Earthquake is a key variable, since the facility (dam) must 
provide perpetual containment for the waste.  The choice of the MDE should reflect the largest event that 
the dam would be expected to experience during its functional lifetime, and survive the shaking produced 
by this event.  Because tailings dams are structures that must impound waste with chemical properties 
and/or physical properties that pose long term risk to the public and the environment, assumptions related 
to critical design parameters for these structures should be the most conservative in order to protect public 
interests and public safety. 

                                                                                          

15 Large Dams the First Structures Designed Systematically Against Earthquakes, Martin Wieland, ICOLD, The 14th World 
Conference on Earthquake Engineering, Beijing, China, October 12-17, 2008 



Page 9 

The Maximum Design Earthquake is a predicted maximum earthquake described in terms of size and 
distance from the dam.  The MDE is typically used in computer models to evaluate how a dam will 
respond to earthquakes.  The science used to determine the MDE, while sophisticated, has limits.  The 
physical properties of seismic events have only been recorded since the early 1900’s (Introduction to 
Seismology, Peter Shearer, Cambridge University Press).  On most faults, no earthquake has happened 
within that time frame, so paleoseismology techniques must be used to estimate earthquake size in the 
more distant past.  In many areas, the faults are not mapped or analyzed, further reducing the confidence 
in these determinations.  There is still a great deal of uncertainty over the potential size, and more 
importantly the location, of future seismic events. 

The choice of the Maximum Design Earthquake for a tailings dam becomes important not only from the 
perspective of determining the largest seismic event that dam can withstand and still hold back the 
material it is impounding, but also because there is a direct correlation between the size of the MDE and 
the cost of constructing the dam – the larger the MDE, the greater the cost of the dam.  Tailings dam 
construction costs generally run from tens to hundreds of millions of dollars.  Tailings dam construction 
cost is one of several significant factors in determining the cost of mining, and the competiveness of the 
mine in the international markets.16 

Estimating Earthquake Size and Location 

Probabilistic Method:  In order to estimate the earthquake potential of a given region, geologists use data 
from historic earthquakes, combined with studies of known faults.  For well-studied faults, there are both 
historic measurements, and prehistoric earthquake estimates gleaned from paleosismic studies.  A 
probability distribution over time is created based on the recurrence interval (how frequently an 
earthquake occurs) and the distribution of earthquake sizes on that fault.  To account for the potential of 
earthquakes on unknown faults, this distribution is combined with information from smaller, historic 
earthquakes across the region.  Seismic instruments can measure earthquakes down to a very small size, 
and record many earthquakes for which no fault is known.  Statistical methods can be used to take the 
occurrence and size of these small earthquakes and estimate a probability distribution that includes larger 
earthquakes as well.  In order to choose a Maximum Design Earthquake, a time frame and a probability 
are specified.  For example, you might decide to design for the largest earthquake with at least a 2% 
chance of occurrence, over the next 1,000 years.  

Deterministic (Fault Length) Method:  Another method for determining earthquake potential is to 
estimate the maximum energy that could be released for a given fault.  Earthquake energy in a given event 
is closely related to the length of rupture.  Therefore, a rupture across the entire length of a fault will 
produce the maximum possible energy on that fault.  This can be calculated if the fault length is known.  
The advantage of this method is that it gives a true maximum, rather than a probability, for a known fault, 
eliminating the uncertainties in estimating recurrence interval and earthquake size prior to instrumental 
measurement.  The disadvantage of this method is that it does not account for unknown faults, or faults of 
unknown length.   

If the deterministic (fault length) method is used to estimate the maximum earthquake size, location can 
be described simply as the closest point on the measured fault.  In the probabilistic method a statistical 
analysis is done to determine the largest earthquake that might occur in a given geographic area.   

"Strictly speaking, the MCE is a deterministic event, and is the largest reasonably conceivable 
earthquake that appears possible along a recognized fault or within a geographically defined tectonic 
province, under the presently known or presumed tectonic framework. But in practice, due to the 
problems involved in estimating of the corresponding ground motion, the MCE is usually defined 

                                                                                          

16 Other significant cost factors for a mine include the construction of the mine and mill facilities, power generation, and 
operating costs (labor, materials, fuel, etc.). 
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statistically with a typical return period of 10,000 years for countries of low to moderate seismicity." 
(Wieland, M, ICOLD, 2008, p.7) 

However, probabilistic methods can be viewed as inclusive of all deterministic events with a finite 
probability of occurrence (McGuire, c1999, p. 1). 

"Deterministic and probabilistic seismic hazard analyses should be complementary. The strength of 
one over the other depends on the earthquake mitigation decisions to be made, on the seismic 
environment, and on the scope of the project. In general, more complex decisions and subtler, detailed 
seismic environments strongly suggest the probabilistic analysis, whereas simpler decisions and well-
understood seismicity and tectonics point toward deterministic representations.”  (McGuire, c1999, p. 
6)  

The “Design Earthquake” – How Large and How Far Away?  

The choice of the Maximum Credible Earthquake as the Maximum Design Earthquake for a tailings dam 
is an appropriately conservative choice for the design seismic event.  For most structures, including the 
design of buildings and other structures that are designed with finite lifetimes, the choice of a Maximum 
Design Earthquake is often one with a recurrence interval significantly less than that of the Maximum 
Credible Earthquake, since these structures will not be used indefinitely.  

Tailings dams, however, require a very conservative choice of design event.  Once these structures are 
built, it is not economically or environmentally viable to move the waste that is impounded behind the 
dam.  The dam must hold this waste safely in perpetuity.  We don’t know how long ‘perpetuity’ means, 
but 10,000 years (e.g. the approximate time since the last ice age) is a minimum approximation.   

"According to the current ICOLD guidelines, large dams have to be able to withstand the effects of 
the so-called maximum credible earthquake (MCE). This is the strongest ground motion that could 
occur at a dam site. In practice, the MCE is considered to have a return period of several thousand 
years (typically 10’000 years in countries of moderate to low seismicity)." (Wieland, ICOLD, 2001) 

The unintended release of the waste behind a tailings dam imposes real costs on society.  There is a direct 
economic cost associated with cleaning up the waste that would escape from a failed impoundment, which 
can run into the hundreds of millions of dollars.17  If there is no cleanup the long term environmental costs 
will be borne by local communities, both natural and human, and could be even larger than the direct 
cleanup costs. 

Tailings dams, which must impound the waste behind the dam in perpetuity, should use the Maximum 
Credible Earthquake as the Maximum Design Earthquake.  However, because cost is a significant factor 
in the economic viability of mining projects, the Maximum Credible Earthquake is considered, but often 
not required as the Maximum Design Earthquake for tailings dams in many regulatory jurisdictions.18  

Although much progress has been made on designing large dams to withstand seismic events, there is still 
much progress to be made. 

"Dams are not inherently safe against earthquakes. In regions of low to moderate seismicity where 
strong earthquakes occur very rarely, it is sometimes believed (i) that too much emphasis is put on the 
seismic hazard and earthquake safety of dams, and (ii) that dams designed for a seismic coefficient of 
0.1 are sufficiently safe against earthquakes as none of them has failed up to now. Such arguments are 
not correct. 

                                                                                          

17 For example the Los Frailes dam break (near Seville, Spain), April 1998.  As of August 2002 the cleanup cost was 276 
million Euros (El País/El Mundo, August 3, 2002) 
18 For example, the State of Alaska does not require the use of the Maximum Credible Earthquake for tailings dam design. 
(Alaska Department of Natural Resources, 2005, Table 6-2. Operating- and Safety-Level Seismic Hazard Risk) 
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For the earthquake safety evaluation the same criteria (dam must withstand the MCE ground motion) 
as for the hydrological safety (PMF must be released safely) have to be considered." (Wieland, M, 
ICOLD, 2008, p.7) 

Once the size of the design seismic event has been determined, it must be given a location.  The further 
away the tailings dam is from the location of the earthquake, the less energy the tailings dam will need to 
withstand in order to maintain its structural integrity.  The closer the location of the earthquake to the 
tailings dam, the higher the cost of building the dam, because the closer the earthquake the more energy 
the dam will have to withstand.    

Seismologists know that there are many active faults that have not been mapped or have been mapped 
inaccurately, that some faults believed to be inactive may actually be active, and that there are many 
inactive faults that may become active again.19  Because of these considerations, probabilistic methods are 
the more conservative way to determine the magnitude of a Maximum Credible Earthquake for dam 
analysis. 

For tailings dams the most conservative choice for the location of the Maximum Design Earthquake 
would be what is sometimes referred to as a ‘floating earthquake’ on an undiscovered fault that passes 
very near the site of the dam.  This is a way of recognizing that we do not know the present, future, and 
even the past locations of significant faulting, and associated earthquakes (National Research Council, 
1985, pp. 67-68).  The conservative choice for a Maximum Design Earthquake would be a Maximum 
Credible Earthquake that ruptures the ground surface on which the dam is built.  

Post Closure Monitoring and Maintenance 

Even when the reclamation process has been completed for a tailings facility, there is still need for 
ongoing monitoring and maintenance.   

“Experience regarding the long term behavior of tailings storage facilities (TSFs) is limited.  Most 
are still in the phase of after care.  Our knowledge is constantly increasing, but the closed and 
remediated tailings dams today (2006) are less than one or two decades old i.e. most experience of the 
long term stability of tailings dams after closure is still limited.  In this case the long term is defined 
as 1000 years, or more.” (ICOLD, 2006, p. 39) 

The International Commission on Large Dams/United Nations Environmental Program publications 
describe some of the factors driving the need for long term monitoring and maintenance.  These include 
dam stability, which requires monitoring for (ICOLD, 1996b, p. 21):  

 seepage discharges through the dam, foundation, or abutments; 
 phreatic surface20 in the tailings pond and dam; 
 pore pressures in the dam; 
 horizontal and vertical movements in the dam  

In addition to these conventional risks to dams, the need to confine tailings behind the constructed dam 
impose additional long-term monitoring concerns, including progressive processes that degrade dam 
stability over time, including (ICOLD, 2006, p. 44):  

 weathering of materials 
 water and wind erosion 
 ice and frost forces 
 intrusion by vegetation and animals  

                                                                                          

19 Faults, and the corresponding earthquakes, are most often very deep structures.  The major source of the energy associated 
with an earthquake is usually located a significant distance below the earth’s surface.  
20 The phreatic surface is the surface of the water-saturated part of the ground, i.e. the groundwater level. 
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Also, there are known faults in the area that were once active, and which may or may not currently be 
active.  The Lake Clark Fault, an extension of the Castle Mountain Fault, extends southwest from Lake 
Clark Pass down through Lake Clark (Haeussler et al. 2004).  The Bruin Bay Fault branches from the 
Castle Mountain and Lake Clark faults near Tyonek, and runs south along the Cook Inlet coast into 
Katmai National Park. 

Given the lack of instruments and geological fieldwork in the area it is very possible that subtle evidence 
of activity on these faults and others has simply been missed. 

There are several potential sources of earthquakes that might affect Pebble.  The source for the largest 
potential earthquake comes from the subduction zone along the Aleutian Trench south of the coast in the 
Gulf of Alaska.  This was the source of the famous 1964 magnitude 9.2 Alaska earthquake.   

There are also a series of fault systems that parallel the Aleutian Trench on the Alaska mainland north of 
the subduction zone.  One of these faults is the Denali Fault zone.  A magnitude 7.9 earthquake occurred 
along the Denali Fault in 2002.  Another of these parallel faults is the Lake Clark Fault.  This is the fault 
that comes closest to Pebble.   

A final seismic threat is what is generally termed as a “floating’ earthquake, that is, one that is not 
associated with a known fault.  It is generally assumed that this floating earthquake would occur very near 
to the site being evaluated, but could also be of a lesser magnitude than an earthquake associated with a 
known fault system.  Any actual earthquake will occur on a fault, but the "floating" earthquake is a 
statistical construct used to estimate the risk of an earthquake on an unknown fault. 

The energy from an earthquake dissipates as it radiates from the source (the source is a planar surface 
extending into the earth rather than a point).  So, the further away a location is from the source of the 
earthquake, the less energy is available to cause motion at the dam location.  The 1964 earthquake 
ruptured to within approximately 125 miles from the Pebble site, while the 2002 rupture extended to 
within about 260 miles.  The Lake Clark Fault (an extension of the Castle Mountain Fault) is less than 20 
miles from Pebble.  Therefore, the Lake Clark Fault is much more likely to be the source of the Maximum 
Credible Earthquake at the Pebble Mine site. 

This is especially problematic, because the location of the Lake Clark Fault is not known, and it is 
possible that it runs directly through the area of proposed development at Pebble (Haeussler et. al., 2004).  
The Lake Clark Fault is almost certainly less active than the Denali Fault, meaning that it has a longer 
recurrence interval between earthquakes.  However, in the long time span that a tailings dam is required to 
maintain integrity, it has a significant chance of producing an earthquake of 7.9 or similar magnitude.  A 
difference of only a mile in the location of this fault could have a dramatic impact on the potential ground 
acceleration at the tailings dam, and hence on the engineering constraints for the dam.  The larger the 
earthquake, the more energy, and the longer the period of shaking that will take place at the dam site.   

Alaska Regulatory Requirements 

Alaska dams fall into one of three classes:  

(1) Class I - Probable loss of one or more lives 
(2) Class II - No loss of life expected, although a significant danger to public health may exist 
(3) Class III - Insignificant danger to public health 

(Alaska Department of Natural Resources, 2005, Section 2.4 Hazard Potential Classification, 
Table 2-1. Hazard Potential Classification Summary, in Appendix B of this paper) 

The Alaska dam classification system is designed primarily for water retention dams.  Tailings dams are 
not specifically mentioned in the Alaska regulations, yet tailings dams are the largest dam structures in the 
state.  From a classification standpoint the main difference between a Class I and Class II dam is 
essentially that people are directly at risk below a Class I dam, but there are no human habitations directly 
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below a Class II dam.  However, from a performance standpoint the most significant difference in dam 
safety requirements between a Class I and Class II dam is the size of the earthquake the dam is required to 
withstand (see Alaska Department of Natural Resources, 2005, Section 6.3.2 Design Earthquake Levels, T 

able 6-2. Operating- and Safety-Level Seismic Hazard Risk, in Appendix B of this paper).21  Class II 
dams must withstand seismic events with return periods of 1,000 – 2,500 years, and Class I dams 2,500 
years to the Maximum Credible Earthquake (Alaska Department of Natural Resources, 2005, T able 6-2).  
Note that it is not mandatory to use the Maximum Credible Earthquake as the Maximum Design 
Earthquake for a Class I dam. 

Choice of MCE & MDE at Pebble 

As discussed in Knight-Piesold, 2006, under Alaska dam classification regulations a tailings dam would 
be classified as a Class II dam (Knight Piesold Ltd., 2006, Section 3.2.3 Design Earthquakes). 

The most recent information about seismic considerations for tailings dams (Tailings Storage Facility - 
TSF,) at the Pebble site comes from the Preliminary Assessment of the Pebble Project, Southwest Alaska, 
Wardrop-Northern Dynasty Mines, February 17, 2011, p. 52: 

“Recognizing the seismic characteristics of Alaska, particular attention has been paid to 
understanding seismic risk factors in the TSF design.  The embankment design parameters conform to 
Alaska Dam Safety regulations, under which they would be classified as Class II structures.  Extensive 
research has been conducted into historical seismic events, in Alaska generally and in southwest 
Alaska in particular, to support an assessment of the probability and magnitude of seismic events that 
might affect Pebble. 

Analysis of public domain literature was undertaken to determine the location of likely sources for 
seismic events near Pebble, with the most likely candidate identified as the Lake Clark Fault.  The 
location of this fault has been identified as part of a geophysical survey of the region.  Using these 
data, as well as public domain information, the energy that might be released if a major earthquake 
were to occur along the Lake Clark Fault has been determined. 

The parameters used in this analysis are extremely conservative.  For instance, while there is no 
evidence of movement along the Lake Clark Fault since the last glaciers receded some 10,000 years 
ago, TSF seismic design criteria assume that it is an active fault.  Further, sections of the Lake Clark 
Fault nearest the Pebble Project are actually splays of the main fault and thus unlikely to release the 
same energy as if the entire fault was to move.  Nonetheless, TSF seismic design criteria have 
conservatively assumed that the Lake Clark Fault is both active and capable of a seismic event 
equivalent to slippage along the entire fault.”   

This 2011 summary appears to reflect earlier work done by Knight-Piesold Ltd., for Northern Dynasty in 
2006.  In the sections on seismic risk from the Knight-Piesold Ltd., 2006, Report.22  

“Consistent with current design philosophy for geotechnical structures such as dams, two levels of 
design earthquake have been considered: the Operating Basis Earthquake (OBE) for normal 
operations; and the Maximum Design Earthquake (MDE) for extreme conditions (ICOLD, 1995a). 

                                                                                          

21 This points to a fundamental flaw in the Alaska Dam Classification Seismic Stability Regulations, where large tailings dams 
could be regulated as Class II dams with significantly less seismic safety requirements than Class I, even though they are the 
largest dams in Alaska, and have an infinite lifetime.  The author has discussed this situation with officials in the Alaska 
Department of Natural Resources, and while sympathetic they point to the difficulty in changing regulations, and the flexibility 
of the State to require some dams to be Class I.  However, some large Alaska tailings dams have been classified as Class II in 
the past (Red Dog, although it is voluntarily being upgraded to Class I), and the possibility for this happen again still 
unnecessarily exits. 
22 See Appendix A of this paper for these sections in their entirety. 
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Values of maximum ground acceleration and design earthquake magnitude have been determined for 
both the OBE and MDE. 

Appropriate OBE and MDE events for the facilities are determined based on a hazard classification 
of the facility, with consideration of the consequences of failure.  The hazard classification was 
carried out using the criteria provided by the document “Guidelines for Cooperation with the Alaska 
Dam Safety Program” (2005).  Classification of the facilities is carried out by considering the 
potential consequences of failure, including loss of life, economic loss and environmental damage.  
The hazard classification has been assessed as at least Class II (Significant).  The OBE and MDE are 
selected based on the dam hazard classification and an appropriate earthquake return period, as 
defined by the “Guidelines for Cooperation with the Alaska Dam Safety Program” (2005). 

For a Class II hazard classification, the OBE is selected from a range of return periods from 70 to 
200 years, depending on the operating life of the facility, the frequency of regional earthquakes and 
the difficulty of quickly assessing the site for repairs.  The impoundment would be expected to remain 
functional during and after the OBE and any resulting damage should be easily repairable in a 
limited period of time. 

The MDE is typically selected from a range of return periods from 1,000 to 2,500 years for a Class II 
hazard classification.  However, the MDE for the Pebble TSF has been conservatively based on a 
Class I hazard classification making it equivalent to the Maximum Credible Earthquake (MCE), 
which has a bedrock acceleration of 0.30 g corresponding to a magnitude M7.8 earthquake, 
occurring along the nearby Castle Mountain Fault system.” (Knight Piesold Ltd. 2006, Section 2.5 
Seismicity and Embankment Stability) 

Although the Pebble NDM consultants have decided to base their calculations on the “Maximum Credible 
Earthquake”, their use of the deterministic method for the MDE/MCE does not appear to meet ICOLD 
standards for locating the MDE/MCE.  The Pebble NDM consultants assume the Lake Clark Fault is 18 
miles from the minesite, and using this deterministic location ignores the risks from unknown or poorly-
mapped faults, and could also lead to underestimating the amount of energy that could impact a tailings 
dam at the Pebble minesite.23  

Although Knight-Piesold considers that Maximum Design Earthquake for the Pebble dam design to be the 
Maximum Credible Earthquake, an examination of Table 3.1 of the report reveals that the calculations for 
maximum horizontal acceleration are based on a 1-in-5000 year earthquake, not the 1-in-10,000 year 
event recommended by the International Commission on Large Dams (Knight Piesold Ltd., 2006, Section 
3.2.2 Seismic Hazard Analyses, Table 3.1, in Appendix A of this paper).  The choice for the magnitude of 
the Maximum Credible Earthquake for Pebble is not the same, and not as conservative, as that 
recommend by International Commission on Large Dams. 

Because a return period of 5000 years has been chosen instead of the 10,000 years recommended by 
ICOLD, it is unlikely that the horizontal acceleration of the 1 in 3,000 – 5,000 year event (0.3 g – Knight 
Piesold Ltd., 2006, Section 3.2.2 Seismic Hazard Analyses, Table 3.1, in Appendix A of this paper) is as 
large as that of the horizontal acceleration for a 1 in 10,000 year event would be.  

Using a seismic event with a return period of 5000 years implies that the dam will experience an 
earthquake of this magnitude sometime during the 5000 year period.  Over 10,000 years the dam could 
experience an earthquake of this size twice.  Using an earthquake with a return period of 10,000 years 
would probably mean that the dam would have to be designed to withstand more energy and longer 

                                                                                          

23 Table 3.2, Section 3.2.2 Seismic Hazard Analyses, Knight Piesold Ltd., 2006, in Appendix A of this paper, shows the 
deterministic locations and associated magnitudes of the Maximum Design Earthquakes analyzed for Pebble in 2006.  A 
probabilistic floating earthquake is not included in this analysis. 
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one of the splays of the Lake Clark Fault.  This type of earthquake suggests either the extension of a 
known fault or an unmapped fault, either of which may pass closer to the Pebble site than the current 
estimate.  

Picking the Maximum Design Earthquake using a deterministic method when the location of the fault is 
uncertain is insufficiently conservative to protect public safety over the life of the tailings dam.  Lacking 
more accurate mapping, a probabilistic method that locates a ‘floating earthquake’ very near the facility 
should be used.  

Conclusions 

As a society we still don’t fully understand the long term implications of storing billions of tons of 
potentially harmful waste in large impoundments.  We have been building large tailings dams for about a 
century, but these structures must maintain their integrity in perpetuity, so we have only a relatively short 
history of their performance.  

What we do know is that the technology for designing and identifying the long term threats to these 
structures has been advancing steadily during this same time.  These advances to the technology have 
usually been prompted by dam failures that have identified the need for further analysis, as well as the 
need for more conservative assumptions for design specifications and in the magnitude of natural events 
like floods and earthquakes that pose long term risks for these structures.   

When we consider the recorded life of these structures (a century at most) to the length of time that they 
must function (millennia) the number of failures we have experienced in the first century of their 
operation is not comforting.  The International Commission on Large Dams (ICOLD) summarized some 
of the underlying causes for these failures in 2001 Bulletin (Tailings Dams, Risk of Dangerous 
Occurrences, Lessons Learnt from Practical Experiences, Bulletin 121, International Commission on 
Large Dams, 2001): 

"Causes (for dam failure) in many cases could be attributed to lack of attention to detail. The slow 
construction of tailings dams can span many staff changes, and sometimes changes of ownership. 
Original design heights are often exceeded and the properties of the tailings can change. Lack of 
water balance can lead to “overtopping”: so called because that is observed, but may be due to rising 
phreatic levels causing local failures that produce crest settlements." (ICOLD, 2001, p. 53) 

"... the technical knowledge exists to allow tailings dams to be built and operated at low risk, but that 
accidents occur frequently because of lapses in the consistent application of expertise over the full life 
of a facility and because of lack of attention to detail." (ICOLD, 2001, p. 55) 

"By highlighting the continuing frequency with which (dam failures) are occurring and the severe 
consequences of many of the cases, this Bulletin provides prima facie evidence that commensurate 
attention is not yet being paid by all concerned to safe tailings management." (ICOLD, 2001, p. 55) 

"... the mining industry operates with a continual imperative to cut costs due to the relentless 
reduction in real prices for minerals which has been experienced over the long term, plus the low 
margins and low return on capital which are the norm. The result has been a shedding of manpower 
to the point where companies may no longer have sufficient expertise in the range of engineering and 
operational skills which apply to the management of tailings." (ICOLD, 2001, p. 56) 

The Pebble case study provides interesting insight into preliminary design choices for the technical, 
environmental, and economic factors that drive decisions today and may affect future generations that will 
inherit the responsibility and liability for managing these structures.  Policy guidance from an 
organization with responsibilities to guide the safe construction and management of large dams (ICOLD) 
tell us that we should be making ‘conservative’ engineering decisions when designing tailings dams.  But 
we can also see that the recommended design specifications for the tailings dams at Pebble (and at other 
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mines) are not based on the most conservative assumptions about the source and proximity of the largest 
seismic event that might be experienced at the dam site.   

While these decisions may be rationalized in terms of defining ‘reasonable’ risk, we must also 
acknowledge that lessening the assumptions about the amount of risk associated with the design of the 
tailings dam may be motivated by lessening the present day economic cost to the builders the dam.   

One well published author, in discussing mine waste disposal, has noted: 

“… a well intentioned corporation employing apparently well-qualified consultants is not adequate 
insurance against serious incidents” (Morgenstern, N.R., 1998) 

By making ‘reasonable’ rather than ‘conservative’ assumptions we may be increasing the long term risk 
to the society which will inherit the dam and the responsibility for managing the waste, and any future 
costs associated with the escape of impounded waste due to an unanticipated event.   

“The likelihood of extreme events is proportionally large in the long-term phase.” (ICOLD, 1996a, p. 
35) 

The potential for an ‘unanticipated’ event should drive our initial design assumptions to be more 
conservative, but there is ever present economic pressure to limit the extent of these conservative 
assumptions.   

As present day events (the Gulf oil spill, which the oil industry repeatedly said couldn’t happen) 
demonstrate that we don’t fully understand the nature of industrial hazards.  And, as the Honshu 
earthquake (which released 8 times as much energy as the maximum earthquake estimated by seismic risk 
experts ) and accompanying tsunami that crippled the Fukushima nuclear reactors  have shown, we don’t 
even understand some of the critical issues we should be addressing about these hazards.   

In looking at the long term risk from tailings impoundments to other resources – the economic and 
environmental risks to future generations, or the long term risk to a renewable fishery in Bristol Bay – 
policy makers should view the risks from a conservative probabilistic perspective rather than relying on 
assumptions about specific hazards that are likely flawed.  We know that our technology and science has 
limits, and that there are significant economic incentives to make present day decisions about risk less, 
rather than more, conservative about the magnitude of these risks.24   

##### 

  

                                                                                          

24 One professional in this field has described this situation thusly: 

“I have concluded from all these failures that the only way is extreme conservatism, no reliance on the opinions of others—
however reputable—and full site characterization and detailed analyses. For even now I am involved in the design of a tailings 
facility in a part of the world where the design earthquake is 8.5. That is big and could send everything down the valley and the 
experts say there is no problem and I think they are deluded.  

I have written that I believe those who focus on single causes of failure are deluded. There is no single reason for failure of a 
mine geowaste facility. All failures that I have known are the result of a string of minor incidents. If but one of this string of 
incidents had been dealt with, no failure would have occurred. This is pretty much standard accident theory these days, 
although it seems not to have entered the otherwise bright minds of those who write on the failure of mine geowaste facilities. 
Pity them, and pity the profession for remaining so ignorant and failure oriented through failing to keep up with modern ideas 
and theories.  

So the failure of mine geowaste facilities will keep on happening. It is inevitable. The professionals are blind and behind times. 
The operators are greedy and careless. Nobody reads the guidelines. The peer reviewers are old and sleepy. The pressures to 
profit are intense.”  (Slimes Dam - aka Tailings Storage Facility - Failure and what it meant to my mining mindset, April 19, 
2011 by Jack Caldwell, http://ithinkmining.com) 
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3.2 SEISMICITY 

3.2.1 Regional Seismicity  

Alaska is the most seismically active state in the United States and in 1964 experienced the second 
largest earthquake ever recorded worldwide.  Both crustal earthquakes in the continental North 
American Plate and subduction earthquakes affect the Alaska region.  Historically, the level of 
seismic activity is highest along the south coast, where earthquakes are generated by the Pacific 
Plate subducting under the North American plate.  This seismic source region, known as the 
Alaska-Aleutian megathrust, has been responsible for several of the largest earthquakes recorded, 
including the 1964 Prince William Sound magnitude 9.2 (M9.2) earthquake.  There is potential for 
a future large subduction earthquake (M9.2+) along the southern coast of Alaska, and this seismic 
source zone is located approximately 125 miles from the project site. 

Several major active faults in Alaska have generated large crustal earthquakes within the last 
century.  A magnitude 7.9 earthquake occurred along part of the Denali fault in 2002, 
approximately 44 miles south of Fairbanks.  The western portion of the Denali Fault trends in a 
northeast-southwest direction, approximately 125 miles north of the project site.  Approximately 19 
miles northeast of the project site is the western end of the northeast-southwest trending Castle 
Mountain Fault, which terminates approximately at the northwest end of Lake Clark.  A magnitude 
7.0 earthquake associated with this fault occurred in 1933.  The Denali and Castle Mountain faults 
are capable of generating large earthquakes with magnitudes in the range of M7.5 to M8.0. 

3.2.2 Seismic Hazard Analyses  

The seismic hazard for the Pebble project has been examined using both probabilistic and 
deterministic methods of analysis. 

Maximum bedrock accelerations have been determined based on the published USGS probabilistic 
seismic hazard model for Alaska.  This was developed by the USGS to produce their latest seismic 
hazard maps for Alaska.  Maximum horizontal acceleration values have been determined for return 
periods ranging from 100 years to 5000 years.  The results have been summarized in Table 3.1, in 
terms of earthquake return period, probability of exceedance and maximum acceleration.  The 
calculated probabilities of exceedance assume a design operating life of 20 years.  For a return 
period of 475 years the corresponding maximum acceleration is 0.14g, implying a moderate seismic 
hazard. 
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Guidelines for Cooperation with the Alaska Dam Safety Program, 
Prepared by Dam Safety and Construction Unit, Water Resources 

Section, Division of Mining, Land and Water, Alaska Department of 
Natural Resources, June 30, 2005, Sections 6.2, 6.3, 6.4 

  



 

2.4 Hazard Potential Classification 
 

The hazard potential classification is the main parameter for determining the level of attention 
that a dam requires throughout the life of the project, from conception to removal. The hazard 
potential classification represents the basis for the scope of the design and construction effort, and 
dictates the requirements for certain inspections and emergency planning. The ADSP uses three 
classifications for dams based on the potential impacts of failure or improper operation of a dam: 
 

�    Class I (high) 
 

�    Class II (significant) 
 

�    Class III (low) 
 

The hazard potential classifications are explained in detail in 11 AAC 93.157 and are 
summarized in Table 2-1. 
 

Dams are classified based on theoretical estimates of the potential impact to human life and 
property if the dam were to fail in a manner that is typical for the type of dam under review, or if 
improper operation of the dam could result in adverse impacts. The actual or perceived quality of 
design and construction and the condition of the dam are irrelevant for the classification, but may 
influence other requirements such as the frequency of monitoring, the scope of PSIs, and the 
content of O&M manuals and EAPs. 
 

To determine the hazard potential classification consistently and equitably for projects, Dam 
Safety developed the Hazard Potential Classification and Jurisdictional Review Form in 
Appendix A, as previously mentioned. This form should be completed by a qualified engineer 
based on the existing or proposed configuration of the dam, and submitted to Dam Safety for 
review and concurrence. 
 
 
Table 2-1. Hazard Potential Classification Summary 
 

Hazard Class Effect on Human Life Effect on Property 
 

I (High) 
 

 
II (Significant) 
 
 
 
 
 
 

 
 
III (Low) 

 

Probable loss of one or 
more lives 
 

No loss of life expected, 
although a significant 
danger to public health 
may exist 
 
 
 
 

 
Insignificant danger to 
public health 

 

Irrelevant for classification, but may include the same losses 
indicated in Class II or III 
 

Probable loss of or significant damage to homes, occupied 
structures, commercial or high-value property, major 
highways, primary roads, railroads, or public utilities, or other 
significant property losses or damage not limited to the owner 
of the barrier 

Probable loss of or significant damage to waters identified 
under 11 AAC 195.010(a) as important for spawning, rearing, 
or migration of anadromous fish 
 

Limited impact to rural or undeveloped land, rural or 
secondary roads, and structures 

Loss or damage of property limited to the owner of the barrier 
 

 
 

  





 

6.2 Stability 
 

Stability must be demonstrated for all types and hazard potential classification dams under a 
variety of loading conditions. Many acceptable empirical and numerical methods are available for 
evaluation of the stability of dams. The scope of the stability analysis should be defined in the 
design scope memorandum, including methods of analysis and verification and references for 
proposed safety factors, or objectives of deformation analyses or finite element analyses. 
 
The general guidance shown in Table 6-1 should be considered when defining the scope of the 
stability analysis in the design scope proposal. (See Section 5.1.7.) 
 

The stability analysis requirements for hazard potential classification dams are summarized 
below. 
 

Class I (high) hazard potential dams – Detailed stability analysis is required. All computer 
stability analyses must be verified with manual calculations or other approved methods. 
 

Class II (significant) hazard potential dams – Detailed stability analysis is required. 
Graphical or empirical evaluations may be used to verify computer results. 
 

Class III (low) hazard potential dams – Published empirical or graphical methods may be 
adequate for small embankment dams less than 25 feet in height. Embankment dams greater 
than 25 feet in height should be evaluated in the same manner as Class II dams. Other types of 
dams, such as concrete, steel, or timber frame dams, may require a combination of methods. 

 

For any given analysis, all input data and results must be clearly documented, including 
assumptions, sources of information, references, and computer outputs. 
 
Table 6-1. General Guidance for a Stability Analysis 
 

 
Hazard 
Potential 

 

 
Dam Type 

Computer 
Analysis 

Graphical or 
Empirical 
Analysis 

Manual 
Analysis 

Finite 
Element 
Analysis 

Class I All P   V S 

Class II All P V   S 

Class III Earth and rock fill, <25 feet tall O, S P O  

Class III Earth and rock fill, 25 feet or 
taller 

P V    

Class III All others S O O S 

P = Primary method of analysis 

S = May be required under special circumstances 

V = Verification of primary method 

O = Optional method of analysis 
 

6.3 Seismicity 
 

Evaluation and design of all new dams, or major modifications of existing dams should consider 
the effects of seismicity on the stability and performance of the facility, including appurtenant 
structures, reservoir, and associated equipment. A study to assess the seismicity is required for all 
dams. Depending on the complexity of the project, this study may require an interdisciplinary 
team that includes seismic, geologic, geotechnical, and structural engineering specialists. 





 

release of the reservoir must be designed to resist the MDE. In addition, the dam and 
appurtenances must be designed to resist the effects of the MDE on the reservoir and reservoir 
rim. The MDE may be defined based on either deterministic or probabilistic evaluations, or 
both. 

 

Table 6-2 provides a range of probabilistic return periods (risk) considered appropriate for 
defining the OBE and MDE, as a function of the hazard potential classification of the dam. Within 
the context of these ranges, the OBE return period for a given project should be selected in direct 
correlation with the frequency of regional earthquakes, the useful life span of the facility, and the 
difficultly of quickly accessing the site for repairs. The return period selected for the MDE should 
be selected in direct correlation with the magnitude of the maximum credible earthquake (MCE) 
for the known or suspected regional sources; the dam type, size, and geometry; and the reservoir 
capacity. Further guidelines for selecting the ground motions associated with these two levels of 
seismic hazard are provided in Dobry et al. (1999) and USCOLD (1999). 
 
Table 6-2. Operating- and Safety-Level Seismic Hazard Risk 
 
Dam Hazard 

 

Return Period, Years 
 

Classification Operating Basis Earthquake Maximum Design Earthquake 

I  

II 

III 

150 to >250 
 

70 to 200 
 

50 to 150 

2,500 to MCE 
 

1,000 to 2,500 
 

500 to 1,000 
 

 
 

6.3.3 Seismic Study Phases 
 

Seismic studies for new dam design should be conducted in two phases, which are described 
below. 
 

Seismic report phase – This phase should occur early in the planning of the project and be 
included with the Preliminary Design Package submittals described in Subsection 5.2.5. The 
seismic report will include preliminary evaluations as needed to establish an understanding 
of the potential influence of the OBE and MDE on the type, geometry, and size of the dam 
and reservoir. Given the preliminary nature of this phase, evaluations can generally be based 
on published information and simplified methods. After the risks have been established, 
preliminary values for the OBE and MDE parameters can be estimated based on regional 
geologic mapping (for example, USGS publications and Plafker and Berg, 1994) and 
seismological studies (for example, Wesson et al., 1999; and USGS National Seismic Hazard 
Mapping Project – Interactive Deaggregation, 2003). Evaluations of the potential for 
liquefaction should be presented based on the local geology, historical record, and simplified 
methods with the use of standard penetration test values from the geotechnical evaluation 
(for example, Seed et al., 2001; and Youd and Idriss, 1997). Evaluations of the response and 
stability of the dam should be presented by using limit-equilibrium or linear-elastic analysis 
and generic response spectra found in applicable design codes or standards (see methods in 
Kramer, 1996). 



 

 

The seismic report phase should also refine the scope and detail of the evaluations to be performed 
during the subsequent design evaluations of the facility conducted in the second phase of the 
seismic evaluation of the dam. If the associated risks are high because of the location of the dam and 
its hazard potential classification, more sophisticated analyses may be required (USCOLD, 1999); for 
example, with deterministic and probabilistic evaluations or acceleration time histories. 

 

Seismic design phase – This phase should occur during the detailed design of the project and be 
included in the engineering design report submitted as part of the Detailed Design Package and 
described in Subsection 5.3.1. The seismic design phase of the seismic study will include formal 
evaluations of each critical element of the dam as needed to assure that the facility meets the 
performance requirements under the OBE and MDE. The effort and sophistication of the work 
conducted during this phase of the seismic study will depend on the hazard potential classification 
of the dam, and the magnitude of the OBE and MDE. For example, the dynamic and stability 
evaluations for all Class I and II dams located in a highly seismic region (with peak ground 
accelerations greater than about 30% to 40% of gravity or peak shear strains greater than about t2%) 
should utilize advanced one- and two-dimensional site response analysis techniques (for example, 
Lee & Finn, 1978; and Idriss et al., 1973) to more accurately model the nonlinear behavior of soil 
subject to earthquake loading. On the other hand, the dynamic stability evaluations for Class III 
dams or Class II dams located in regions with low seismicity (with peak ground accelerations less 
than about 5% to 10% of gravity) can utilize the same simplified methods followed in the seismic 
report phase, and no additional detailed evaluation may be required. However, the simplified 
methods presented in the seismic report should be reviewed with respect to the final design of the 
dam, and should be revised if necessary. Evaluations of Class I and II dams located in regions of 
moderate seismicity can utilize techniques between these ranges, such as equivalent-linear, one-
dimensional, site response analysis (for example, Idriss and Sun, 1992). 

 

6.4 Seepage 
 

Seepage must be considered for all hazard potential classification dams; however, the scope of the 
analysis depends on a number of factors, including the size and type of dam and the foundation and 
construction materials. The following are conditions and suggested levels of evaluation based on the 
hazard potential classification of the dam. 
 

All hazard potential class dams 
 

The material properties, including permeability, must be estimated for both the foundation 
and construction materials. 

 

Filters must be included in all embankment dams between core materials and drains. 
Soil filter criteria must be demonstrated based on actual gradation tests. References to filter 
criteria standards must be included. 
 
Appropriate seepage cutoff or reduction measures must be included to limit gradients and 
prevent piping and erosion. 
 
All dams must include the appropriate drainage features to control seepage pressures and 
gradients, including uplift. 

  




