
A Review of the 

“Report on Mount Polley Tailings Storage Facility Breach, Independent Expert Engineering 
Investigation and Review Panel” 

David M Chambers 
 Center for Science in Public Participation 

February, 2015 
 
Early on August 4, 2014, the Perimeter Embankment at the Mt Polley copper mine near Likely, south-
central British Columbia, failed catastrophically.  The loss of containment was sudden, with no warning. 
That failure, which released at least 25 million cubic meters of mine tailings and mine effluent mixed with 
stormwater into Polley Lake, Hazeltine Creek and finally stopped when it reached Quesnel Lake, a large 
salmon-spawning fjord-type lake.   

The Cariboo Regional District declared a local state of emergency in several nearby communities, the 
Interior Health Authority ordered drinking water bans, and the Department of Fisheries and Oceans closed 
the recreational salmon fishery on the Quesnel and Cariboo Rivers.  Fortunately, there were no human 
fatalities or injuries. 

Why did the Mt Polley TSF Fail? 

The failure of the Mt Polley Tailings Storage Facility (TSF) was reviewed shortly after the accident by an 
expert panel of three engineers.1  The words of the panel itself succinctly describes what happened, why it 
happened, and what we should be doing to avoid similar TSF failures in the future. 

The Panel concluded that the dominant contribution to the failure resides in the design. The design 
did not take into account the complexity of the sub-glacial and pre-glacial geological environment 
associated with the Perimeter Embankment foundation. As a result, foundation investigations and 
associated site characterization failed to identify a continuous GLU (Glasciolacustrine Unit) layer in 
the vicinity of the breach and to recognize that it was susceptible to undrained failure when subject to 
the stresses associated with the embankment. 

The tailings dam was built on top of an old, relatively small, glacial lake that contained mainly clays.  The 
builders of the dam, Knight-Piesold Ltd., made several assumptions that led to this problem.  They 
assumed that the extent of the clay was less widespread that it in fact was, and that the clay constituting 
the lake sediment (called the Upper Glasciolacustrine Unit – GLU) would not loose shear strength as the 
sediment was loaded by the weight of the dam, tailings, and water.  These proved to be both flawed and 
ultimately fatal assumptions for the dam. 

Figure 1 (from the Report) maps the resulting failure on top of an aerial photo of the failed dam.  The 
increasing load due to the ongoing construction of the dam, and the load of tailings and water behind the 
dam, finally caused the glacial clay lake-layer to break and slide, rupturing the dam.  There were no 
precursor warnings to the failure.  The failed piece of the dam rotated down and out, letting water spill 
over the top of the failed segment, and in a short time washed that piece of dam away. 

 

                                                 
1Dr. Norbert R. Morgenstern (Chair), CM, AOE, FRSC, FCAE, Ph.D., P.Eng.; Mr. Steven G. Vick, M.Sc., P.E.; and, Dr. Dirk 

Van Zyl, Ph.D., P.E., P.Eng.  Report on Mount Polley Tailings Storage Facility Breach, Independent Expert Engineering 
Investigation and Review Panel, Province of British Columbia, January 30, 2015 



Figure 1: Plan Showing Direction and Extent of Mass Movements 



Figure 2 shows the drillholes made before the dam was built.   

The drillholes depicted as solid circles in Figure 2 were drilled deep enough to intersect the Upper GLU, 
and clays intersected in those holes were lab tested for shear strength.   

The drillholes depicted as open circles were not drilled deep enough to intersect the Upper GLU.   

As can be seen in Figure 2, there are only shallow drillholes (open circles) in the area of the failed dam 
segment.  There are no drillholes in the area of the dam failure that intersected the Upper GLU or that 
were lab tested for shear strength. 

 

 
Figure 2: Pre-Failure Site Investigation Drillhole Locations in Breach Area 

 

  



Post-failure drilling in the area of the failure, Figure 3, did intersect the Upper GLU, and lab testing of 
these clays clearly determined that the clay of the Upper GLU would fail under the increased pressures of 
the dam and tailings. 

 

 

Figure 3: Joint and Panel Site Investigation Drillhole Locations 

 

  



Figure 4 shows the extent and thickness of the Upper GLU – just small enough to have avoided the 
original deeper drillholes – but large enough to cause the catastrophe. 

Figure 4: Contours of Upper GLU Thickness in Breach Area 

 

The factors that contributed to either the dam failure, or that significantly increased the impact of the dam 
failure, were a bit more complex than just the inability to detect the Upper GLU.  The environmental 





Other Complicitous Factors 

There were a number of other factors that turned up during the course of the investigation of the dam 
failure which contributed materially to the fundamental cause of the accident itself.  However, one did 
make the accident significantly worse, and two others could eventually have led to a dam failure on their 
own. 

(1) Tailings Pond Water Level 

At the time of the dam failure the water level in the tailings pond was just below the maximum level 
allowed.  For some time the mine has been forced to manage water in the tailings pond at emergency 
levels due to higher than predicted precipitation 

The high water level was the final link in the chain of failure events. Immediately before the failure, 
the water was about 2.3 m below the dam core. The Panel’s excavation of the failure surface showed 
that the crest dropped at least 3.3 m, which allowed overflow to begin and breaching to initiate. Had 
the water level been even a metre lower and the tailings beach commensurately wider, this last link 
might have held until dawn the next morning, allowing timely intervention and potentially turning a 
fatal condition into something survivable. 

The overflow of water due to the high water level in the tailings pond caused the mass release of tailings 
and contaminated water.  There would have been a dam breach even absent the water, but with no water 
there would have been little tailings release.  There would probably have been minimal or no tailings 
release if the tailings pond were at normal levels – but it wasn’t, and the tailings pond full of water led to 
the large release of tailings downstream. 

Managing mine water was an issue because the water balance predictions were not accurate. 

The water balance model included the site-specific information to the date of analysis, and future 
conditions were based on average climatic conditions. They did not account for specific wet year 
conditions. 

This is an issue that should have been apparent to both regulators and mine designers, but was either 
missed or ignored.   

The mine had received permission to discharge treated water to resolve this problem, and a treatment 
plant was scheduled to begin operation in September, 2014.  The accident happened on August 4, 2014. 

However, earlier in 2014 the tailings pond faced a potentially catastrophic situation when water reached 
the top of the dam, and began to overflow.  If this had continued, it too would have caused a catastrophic 
dam failure with concurrent release of tailings and contaminated water, much like the August accident. 

Again, in order to stress the severity of the issue, here are the words of Panel: 

For years, dam raising had managed to stay one step ahead of the rising water. But on May 24, 2014, 
the water caught up. With Stage 9 nearing completion, what was described as “seepage flow” was 
observed over the dam core. Intensive surveillance and construction activity over the following days 
and weeks succeeded in raising low areas around the embankment perimeter, restoring containment 
integrity, and saving the dam from overtopping failure. 

The water level in the tailings pond was a major contributing factor to the damage associated with the 
dam failure, although it was not related to the cause of the failure itself.  But dam failure due to 
overtopping by water in the tailings pond was a real risk, and that almost happened on May 24, 2014. 



(2) Dam Filter Material 

The duty of the filter zone in the dam is 
to collect any seepage coming through 
the core and to prevent fines from 
migrating out of the core.  In order for 
the dam to drain properly internally, the 
core, filter, and transition (to the 
buttress) zones must be carefully 
constructed.  Much of the as-placed 
filter material at Mt Polley failed to 
meet applicable filter criteria and 
requirements for internal stability of its 
grading. 

... in a sampling of as-placed Zone S 
filter gradations, the Panel found 
that 30% were too coarse to meet 
the …  filter criterion … with only 
about 25% satisfying both filter and 
internal stability requirements. 

If the filter material is too course, it does not act as filter, but more like a drain.  This can lead to voids in 
the core of the dam.  This was essentially the cause of the Omai tailings dam failure.  Had this situation 
been widespread it too could have led to dam failure at Mt Polley.   

And, in fact, during the field work associated with the dam failure, a serious void was discovered (Figure 
6), but there was no evidence of further voids discovered during the investigation.  The quality control 
function of dam construction was obviously not working satisfactorily.  This reflects poorly on both those 
who constructed the dam, those who were supervising the construction (this should have been an 
independent party), and on the standards set by regulators, which were not tight enough to detect these 
errors. 

(3) Inoperative Piezometers 

A piezometer is a general term used for a well drilled into the dam to measure water level and pressure.  
Installed in the dam were 116 piezometers.  Piezometers were installed in the dam foundation, in various 
embankment components, such as the upstream fill, core, and downstream transition zone, in drains 
located in the embankment and foundation, and in the tailings upstream from the embankment.   

The piezometers at the Perimeter Embankment were located too far beyond the dam toe to provide critical 
data, and too far in between to cover the area where the breach occurred, so they were not able to supply 
information on the dam failure.  Piezometers, even if properly located and operating, would probably not 
been able to detect this type of failure.  However, normally they can provide an early warning that the 
core of the dam is compromised, and can provide warning of impending dam failures. 

As early as 2009 the functionality of these piezometers had been an issue.2  Yet as of August 2014, there 
were a total of 64 operating piezometers and 52 non-operating piezometers in the dam.  There were nine 
operating and 13 non-operating piezometers along the section of the Perimeter Embankment that failed.   

Allowing nearly 50% of the piezometers to be non-operational should not be acceptable either to the dam 
operator or the dam regulators.  Non-operational piezometers take a significant safety tool away from all 
dam observers. 

                                                 
2 Knight Piésold Consulting, Tailings Storage Facility Report on 2009 Annual Inspection (Ref No VA101-1/27-1, 2011), at 7. 

Figure 6: Void in left abutment (note geo-pick for size) 



(4) TSF Management and the “Observational Method” 

According to the Panel: 

The Observational Method is a powerful tool to manage uncertainty in geotechnical practice. 
However, it relies on recognition of the potential failure modes, an acceptable design to deal with 
them, and practical contingency plans to execute in the event observations lead to conditions that 
require mitigation. The lack of recognition of the critical undrained failure mode that prevailed 
reduced the Observational Method to mere trial and error. 

The Observational Method was invoked early on as the basis for design. This commonly accepted 
approach uses observed performance from instrumentation data for implementing preplanned design 
features or actions in response. 

However; 

The Observational Method relies on measuring the right things in the right places. 

Interpreting from the Report, invoking the Observational Method allowed the dam operators, designers, 
and regulators to depart from implementing the planned design of the dam, most notably the allowing the 
Factor of Safety3 to go from the planned 1.5 down to 1.3, by not constructing the dam buttressing on the 
planned schedule.   

To make the Operational Method work mine designers would have to have known about the clay layer 
beneath the dam, but they didn’t.  They should have had extensive instrumentation to monitor the dam, 
but the instrumentation they had was not only in the wrong places, but much of it was not working.   

In the view of the Panel the Operational Method was misapplied at Mt Polly.  But more succinctly, the 
Operational Method was probably invoked at Mt Polley in order to keep mine operation on schedule.  
Invoking the Operational Method eventually led to the dam failure.  There appears to be no regulatory 
guidelines as to when the Operational Method can be invoked, or what should be done to put a dam 
operated under the Operational Method back on its planned track. 

A Way Forward 

The Panel opened its recommendations by saying flatly: 

The Panel firmly rejects any notion that business as usual can continue. (emphasis added) 
The Panel goes on to explain what this means before rendering specific recommendations: 

In risk-based dam safety practice for conventional water dams, some particular level of tolerable risk 
is often specified that, in turn, implies some tolerable failure rate. The Panel does not accept the 
concept of a tolerable failure rate for tailings dams. To do so, no matter how small, would 
institutionalize failure. First Nations will not accept this, the public will not permit it, government will 
not allow it, and the mining industry will not survive it. ... Tailings dams are complex systems that 
have evolved over the years. They are also unforgiving systems, in terms of the number of things that 
have to go right. Their reliability is contingent on consistently flawless execution in planning, in 
subsurface investigation, in analysis and design, in construction quality, in operational diligence, in 
monitoring, in regulatory actions, and in risk management at every level. All of these activities are 
subject to human error. 

… 

Improving technology to ensure against failures requires eliminating water both on and in the 
tailings: water on the surface, and water contained in the interparticle voids. Only this can provide 

                                                 
3 Factor of Safety is the ratio of available strength to the strength required for equilibrium. 



the kind of failsafe redundancy that prevents releases no matter what. ... Simply put, dam failures are 
reduced by reducing the number of dams that can fail. (emphasis added) 

Thus, the path to zero leads to best practices, then continues on to best technology. 

The “path to zero” should not be interpreted literally to mean the Panel believes that achieving zero 
tailings dam failures is attainable for tailings dams or even tailings impoundments.  It does mean the 
“goal” should be zero failures, and that in order to move toward this goal tailings impoundments need to 
be designed such that their stability does not depend on the structural integrity of a tailings dam. 

Best Available Tailings Technology (BAT) 

The goal of BAT for tailings management is to assure physical stability of the tailings deposit.  This is 
achieved by preventing release of impoundment contents, independent of the integrity of any 
containment structures. 

The implication of the statement “… preventing the release of impoundment contents independent of … 
containment structures.” are significant.  This explicitly says that the tailings must have structural 
integrity that is independent of a containment structure.   

Tailings that are saturated with water do not have any structural integrity.  The Panel recommends 
pursuing tailings disposal methods like dry tailings and underground tailings disposal, as well as the 
development of new disposal technologies, the possibilities for which the Panel considers “ripe” if the 
right incentives are put in place. 

This recommendation from the Panel is nothing short of profound.  While it stops short of saying 
explicitly saying no more tailings dams, it couldn’t get any closer without saying it.  The ‘physical 
stability of the tailings must be independent of the containment structures.’  While it might be argued that 
a deposit of wet tailings could be made free-draining after deposition, and therefore have some structural 
stability, tailings are not noted for being free-draining (in fact it is often argued they are self-sealing).  
And even if the tailings were free-draining, the portion of the tailings next to the dam would still depend 
on the dam for some stability. 

The Panel specifically notes that water covers (i.e. maintaining saturated and water-covered tailings in 
perpetuity) should be avoided, even for potentially acid generating material, because the long-term risk of 
dam failure is too great.  The Panel prefers to see potentially acid generating material stored in a dry 
manner, even if that means a concomitant increase in the need for (perpetual) water treatment.  For the 
Panel more water treatment is preferable to long-term wet storage.  This is sobering. 

In terms of how to apply BAT, the Panel made the following recommendations: 

Implementation of BAT is best carried out using a phased approach that applies differently to tailings 
impoundments in various stages of their life cycle. 

• For existing tailings impoundments. Constructing filtered tailings facilities on existing 
conventional impoundments poses several technical hurdles. Chief among them is undrained 
shear failure in the underlying saturated tailings, similar to what caused the Mount Polley 
incident. Attempting to retrofit existing conventional tailings impoundments is therefore not 
recommended, with reliance instead on best practices during their remaining active life. 

• For new tailings facilities. BAT should be actively encouraged for new tailings facilities at 
existing and proposed mines. Safety attributes should be evaluated separately from economic 
considerations, and cost should not be the determining factor. 

• For closure. BAT principles should be applied to closure of active impoundments so that they 
are progressively removed from the inventory by attrition. Where applicable, alternatives to 
water covers should be aggressively pursued. 



Interpreting, the Panel is saying: 

 For existing impoundments – apply Best Applicable Practices (discussed below) 

 For new TSFs, the recommended direction is clear – dry tailings, underground tailings disposal, 
or other non-wet alternatives.  This raises the question of how to treat mines that are already in 
the proposal process, but which have not yet received regulatory approval.  Reason would say 
that since “… cost should not be the determining factor” all new impoundments should be dry, 
but economics is still the strongest driving factor in any mine proposal.  This is probably the 
most cogent issue associated with Panel’s observation that “The Panel firmly rejects any notion 
that business as usual can continue.”  The Panel is saying safety, not cost, should be the 
determining factor in waste impoundment design. 

 For closure of existing impoundments – all closure plans for existing impoundments all closure 
plans should be for dry closure, not for water covers, even if this means increased and perpetual 
water treatment. 

Best Applicable Practices (BAP) 

Best Available Practices are more complex and detailed than Best Available Technologies.  The Panel 
describes the situation thusly: 

The safety of any dam, water or tailings, relies on multiple levels of defence. The Panel was 
disconcerted to find that, while the Mount Polley Tailings Dam failed because of an undetected 
weakness in the foundation, it could have failed by overtopping, which it almost did in May 2014. Or 
it could have failed by internal erosion, for which some evidence was discovered. Clearly, multiple 
failure modes were in progress, and they differed mainly in how far they had progressed down their 
respective failure pathways. 

The Panel makes a number of detailed recommendation for BAP that would impact dam designers, mine 
operators, and regulators.  The BAP recommendation of most note is to implement Independent Tailings 
Review Boards (ITRB) for all large tailings dams, and that the effectiveness of an ITRB depends on the 
following: 

• That it not be used exclusively as a means for obtaining regulatory approval. 

• That it not be used for transfer of corporate liability by requesting indemnification from Board 
members. 

• That it be free from external influence or conflict of interest. 

• That there be means to assure that its recommendations are acted upon. 

The Panel believes that it is essential that the reports of the ITRB “… go to senior corporate management 
and Regulators.”  The Panel does not include the public as one if its suggested parties to be informed.  
Whether this is an intentional omission, or whether the Panel assumed that since the reports would go to 
regulators they would then become public records, is not clear. 

The Panel made a number of very insightful observations on Best Available Practices, including: 

The Panel anticipates that this (adopting guidelines) will result in more prescriptive requirements for 
site investigation, failure mode recognition, selection of design properties, and specification of factors 
of safety. 

Here the Panel is saying that more prescriptive requirements are needed to provide guidance to tailings 
impoundment designers and operators.  This is not a recommendation that says ‘less regulation,’ or ‘self-
regulation’, but a recommendation that clearly says more ‘guidance’ is needed from regulators. 

  



With a broader view, the Panel also noted: 

… future BAP require considerations that go beyond stability calculations. It is important that safety 
be enhanced by providing for robust outcomes in dam design, construction and operations. 

By focusing on “…providing for robust outcomes in dam design, construction and operations.” the Panel 
is saying that tailings dam design and operation must do more than just provide “stability calculations”.  
Here the Panel is again demonstrating its focus on safety (in placing emphasis on determining robust 
outcomes) over cost (merely focusing on stability calculations for the structures that the project can 
afford). 

The Panel notes that in its ‘revised costing’ approach 

The chief reason for the limited industry adoption of filtered tailings to date is economic. 
Comparisons of capital and operating costs alone invariably favour conventional methods. But this 
takes a limited view. Cost estimates for conventional tailings dams do not include the risk costs, either 
direct or indirect, associated with failure potential. ... Nor do standard costing procedures consider 
externalities, like added costs that accrue to the industry as a whole, some of them difficult or 
impossible to quantify. Full consideration of life cycle costs including closure, environmental 
liabilities, and other externalities will provide a more complete economic picture. While economic 
factors cannot be neglected, neither can they continue to pre-empt best technology. 

If “business as usual” is to change, then a goal of zero failures which places a priority on conservative 
assumptions in dam/disposal design must take precedence.  Safety in operation must take priority over 
mine production.  From a project standpoint waste disposal costs must be driven by safety considerations, 
not by ‘what the project can afford’. 

##### 

 


